

Prognose der Schallimmission für die erste Änderung des Bebauungsplans "Mühlenberg"

und die Erweiterung von Betriebsfläche und Anlagen des Werks der Firma KANN

in Mittenwalde

Auftraggeber	KANN GmbH Baustoffwerke, 56158 Bendorf-Mülhofen
Verfasser	DiplPhys. Dr. Joachim Schewe, öffentlich bestellter Sachverständiger für Gewerbe- und Verkehrslärm
Berichtsnummer	G22052-1
Datum	25. Juni 2022

1 Aufgabenstellung und Situation

Für das in den 1990er-Jahren neu gebaute KANN-Werk in Mittenwalde ist die Errichtung einer Halle mit Veredelungsanlagen - Kolleranlage, Spaltanlage und Strahlanlage - einhergehend mit der Vergrößerung der Lagerflächen geplant. Hierfür soll der Bebauungsplan "Mühlenberg" geändert werden.

Die Schallimmission in der Nachbarschaft ist für die Änderung des Bebauungsplans auf der Grundlage der DIN 18005 in Verbindung mit TA Lärm zu prognostizieren. Gegebenenfalls sind Vorschläge für Festsetzungen zu erarbeiten. Ferner ist zu prüfen, ob die geplanten Anlagen nach TA Lärm betrieben werden können.

1.1 Lage

Das KANN-Werk liegt in der Gemarkung Telz am Nottekanal, der geradlinig von Südwest nach Nordost führt, etwa mittig zwischen Mittenwalde und Telz. Nördlich verläuft die Bundesstraße 246, südlich befindet sich jenseits des Kanals ein historisch gewachsenes Industriegebiet "Die Fabrikwiesen". Noch weiter südlich liegen Gelände der Deponie Schöneiche (Stadt Zossen).

Abb. 1: Flächennutzungsplan als Lageplan, GI Mühlenberg in Bildmitte nördlich des Nottekanals links Telz mit Wohngebieten nördlich der B246, rechts Mittenwalde mit Wohngebiet WA am Nottekanal

1.1.1 Werk und Bebauungsplan

Für das Werk der KANN GmbH Baustoffwerke wurde im Jahr 1992 der Vorhaben- und Erschließungsplan "Mühlenberg" [VEP]) erstellt, welcher ein Industriegebiet (GI) ausweist. Dieses Gebiet umfasst rund 86400 m² Fläche zuzüglich Grünstreifen (die Digitalisierung der damaligen Papierkarten ist nicht ganz verzerrungsfrei, sodass die Flächenangaben nur grob gelten).

In diesem Zusammenhang wurde die Schallimmissionsprognose [3] für das Werk vorgelegt. Diese betrachtet im wesentlichen Immissionsorte in der Nähe des Werksgeländes. Sie führt außerdem einen Immissionsort in einem Wohngebiet (nach Flächennutzungsplan) in Telz in 700 m Entfernung auf.

Tatsächlich liegen die ersten Wohnhäuser in mehr als 950 m Entfernung. Der VEP Mühlenberg enthält allerdings den Hinweis << Die Katastergrundlage des Vorhaben- und Erschließungsplans "Mühlenberg" basiert auf einer durchgezeichneten Flurkartenmontage >>, was die Abweichung erklären könnte. Die in [3, VEP] eingezeichnete Halle des Rohrfertigers bzw. "Multifunktionshalle" wurde nicht errichtet, vielmehr befinden sich hier hauptsächlich Lagerflächen sowie Grünflächen.

Im Jahre 1998 wurde der Bebauungsplan "Mühlenberg" [4] für nordwestlich angrenzende Flächen aufgestellt, welcher Flächen für Sozial- und Verwaltungsgebäude (A) sowie Lagerflächen (B) als GI ausweist. Der trennende Grünstreifen des VEP ist in diesem Zusammenhang entfallen. Festgelegt wird stattdessen ein "Wall mit Gehölzpflanzung" zur "Einbindung des Plangebiets und zur Minimierung von Beeinträchtigungen für angrenzende Lebensräume" entlang der Nordwestseite des Plangebiets mit einer Höhe von 2,5 bis 3 m.

Nunmehr soll in der 1. Änderung [5] des Bebauungsplans ein Teil des Lagerbereichs B für die geplante Veredelungshalle genutzt werden. Ferner sollen 5000 m² des südwestlichen Lagerbereichs B - bisher noch landwirtschaftliche Fläche - als Lagerfläche für die veredelten Produkte einbezogen werden; dies entspricht der bereits im Bebauungsplan vorgesehenen Nutzung. Der erwähnte Wall wird entsprechend verlängert.

Abb. 2: Änderungsgebiet vor dem Hintergrund der Bebauungsplan-Karte (mit südlich angrenzendem VEP) blau: digitalisierte Schallquellen Veredlung

1.2 Immissionsorte

1.2.1 <u>Telz (West)</u>

Die Gemeinde Telz ist im Flächennutzungsplan weitgehend als Mischgebietsfläche dargestellt. Im Norden befindet sich jedoch das Kleinsiedlungsgebiet des "Vorhaben- und Erschließungsplan Wohnpark Telz" entlang des Bergwegs. An diesen grenzen nordwestlich noch einige Häuser der "Telzer Höhe" sowie der "Mittenwalder Allee" an. Es handelt sich hierbei überwiegend um landwirtschaftliche Resthöfe (mit Scheunen und anderen Nebengebäuden) im früheren Außengebiet, die inzwischen über die Flächen des VEP "Wohnpark Telz" an den Ortskern angeschlossen sind. In Ermangelung eines Bebauungsplans und in Übereinstimmung mit dem Flächennutzungsplan erscheint hier eine Einstufung als Allgemeines Wohngebiet (WA) als angemessen. Insbesondere unter Berücksichtigung der Nähe zur Bundesstraße 246 kommt ein Reines Wohngebiet kaum infrage.

1.2.2 Stadtkern Mittenwalde (Nordost)

Nordöstlich des KANN-Geländes liegen die Randbezirke von Mittenwalde jenseits der Umgehungsstraße / B 246. Dort befindet sich in gut 1200 m Entfernung ein Allgemeines Wohngebiet, erschlossen von der "Mittenwalder Aue".

1.2.3 Am Kanal

Im VEP sind die Bestandshäuser Am Kanal 1, 1A und 2 südwestlich des Werks, jenseits des Nottekanals, im Industriegebiet "Mittenwalder Gerätebau GmbH" (Die Fabrikwiesen) eingezeichnet. Im Gutachten [3] wurde das näher gelegene Haus Am Kanal 2 dementsprechend als Immissionsort IP2 (GI) berücksichtigt.

1.2.4 Sonstige Aufpunkte

Weitere Wohngebiete gibt es

- östlich in der Gemeinde Gallun (WA, Abstand mehr als 2,4 km)
- nördlich "Am Waldschlösschen" (Abstand mehr als 2,1 km)
- südöstlich: Schöneiche (Abstand mehr als 2,4 km)

Angesichts der mehr als doppelt so großen Abstände sind allein aus geometrischen Gründen Pegelminderungen von mehr als 6 dB zu erwarten. Diese Aufpunkte müssen daher nicht näher betrachtet werden.

1.3 Orientierungs- und Richtwerte

Zu Zwecken der Bebauungsplanung ist die DIN 18005-1 "Schallschutz im Städtebau" [1] heranzuziehen. In Beiblatt 1 sind die folgenden "Schalltechnische(n) Orientierungswerte für die städtebauliche Planung" festgelegt.

Gebiet	Tag	Nacht
Gewerbegebiete GE	65 dB(A)	50 dB(A)
Mischgebiete MI	60 dB(A)	45 dB(A)
Allgemeine Wohngebiete WA, WS	55 dB(A)	40 dB(A)
Reine Wohngebiete WR	50 dB(A)	35 dB(A)

Abb. 3: Orientierungswerte nach DIN 18005 für gewerbliche Schallimmissionen

1.3.1 TA Lärm

Die Orientierungswerte für gewerbliche Schallimmissionen nach DIN 18005 und die Richtwerte nach TA Lärm [TAL] für die immissionsschutzrechtliche Genehmigung eines einzelnen Betriebs sind zahlenmäßig gleich; die DIN 18005 verweist zudem für die Berechnung auf die TA Lärm. Für Industriegebiete setzt die TA Lärm einen Wert von 70 dB(A) tags und nachts an. Der Gebietscharakter ergibt sich aus den Festlegungen in den Bebauungsplänen, ersatzweise aus der tatsächlichen Nutzung.

Immissionsorte, an denen der jeweils gültige Richtwert um 10 dB oder mehr unterschritten wird, liegen außerhalb des Einwirkungsbereichs des Betriebes bzw. der betrachten Anlage. Bei einer Unterschreitung um mindestens 6 dB ist die Schallimmission in der Regel "nicht relevant".

Nach TA Lärm dürfen einzelne, kurzzeitige Geräuschspitzen die Richtwerte tags um nicht mehr als 30 dB(A) und nachts um nicht mehr als 20 dB(A) überschreiten.

Bei der Berechnung des Beurteilungspegels für Wohngebiete sind für die Ruhezeiten 6 bis 7 Uhr sowie 20 bis 22 Uhr (an Sonn- und Feiertagen 6 bis 9, 13 bis 15 und 20 bis 22 Uhr) Zuschläge in Höhe von 6 dB zu berücksichtigen. Die Beurteilungszeit umfasst tags 16 Stunden und nachts die ungünstigste Nachtstunde.

Die TA Lärm kennt zudem "seltene Ereignisse" (maximal 10 Tage oder Nächte im Jahr) für die Richtwerte in Wohngebieten unter engen Randbedingungen erhöht angesetzt werden können.

1.3.2 <u>Vorbelastung</u>

Die tatsächliche gewerbliche Vorbelastung an den Immissionsorten - unter Einbeziehung anderer gewerblicher Immissionen einschließlich des südlichen Industriegebiets - ist nicht genau bekannt. Die Ermittlung der Vorbelastung kann nach TA Lärm entfallen, wenn die jeweiligen Richtwerte um mindestens 6 dB unterschritten werden.

1.4 Schallleistungspegel von Gewerbe- und Industriegebieten

In der DIN 18005 [1] werden folgende flächenbezogene Schallleistungspegel tags und nachts vorgeschlagen:

Industriegebiete: 65 dB(A) Gewerbegebiete: 60 dB(A)

In der Literatur sind seit Langem für die Nachtzeit auch deutlich niedrigere Emissionsansätze zu finden [2]:

Gebietscharakter	von bis	Mittelwert
Eingeschränktes Gewerbegebiet GEe	42,5 47,5	45
Uneingeschränktes Gewerbegebiet GE	47,5 52,5	50
Eingeschränktes Industriegebiet GIe	52,5 57,5	55
Uneingeschränktes Industriegebiet GI	> 57,5	

In der Praxis haben sich Nachtwerte durchgesetzt, die die Tagwerte um mindestens 10 dB, oft 15 dB unterschreiten.

Diese <u>Emissions</u>ansätze pro Fläche sind mit den weiter oben angegebenen Orientierungs- und Richtwerten der Schall<u>immission</u> an bestimmten Immissionsorten nicht zu verwechseln; die Zahlenwerte sind nur zufällig gleich.

Soweit <u>emissionsseitig</u> der Tag-Nacht-Unterschied 15 dB oder weniger beträgt, ist es ausreichend, <u>immissionsseitig</u> ausschließlich die Nachtzeit zu betrachten. Gegebenenfalls ist tagsüber bei Berechnungen nach TA Lärm aber der Zuschlag für Ruhezeiten in Wohngebieten einzubeziehen.

1.4.1 Kontingentierung (?)

Da die Flächen des Bebauungsplans in einer Hand verbleiben und aufgrund der großen Entfernungen zu den Immissionsorten ist eine Kontingentierung, d.h. eine Festsetzung von Emissionskontingenten für bestimmte Teilflächen weder notwendig noch sinnvoll. Zudem haben verschiedene Urteile des Bundesverwaltungsgerichts festgestellt, dass die grundsätzliche Ansiedlungsmöglichkeit für "jeden nach § 8 BauNVO zulässigen Betrieb" nicht im Bebauungsplan über Immissionschutz-Festsetzungen ausgehebelt werden darf.

Die in diesem Bericht verwendeten flächenbezogenen Schallleistungspegel dienen dementsprechend nicht der Festlegung, sondern nur der realistischen Einschätzung von Schallemissionen.

2 Schallemissionen

2.1 Messungen im Werk Ulmen

Der Auftraggeber betreibt im Werk Ulmen Anlagen wie sie auch in Mittenwalde weitgehend baugleich zum Einsatz kommen sollen. Es bot sich daher an, die Schallemissionen in der Veredelungshalle in Ulmen messtechnisch zu erfassen.

Die Messungen wurden am 17.03.2022 vorgenommen. Sie konnten teilweise gesteuert durchgeführt werden, d.h. andere "zu laute" Anlagen konnten abgeschaltet bzw. leergefahren werden.

2.1.1 Messgeräte und Auswertung

Zum Einsatz kommen die folgenden Geräte und Programme:

- Analysator Brüel & Kjaer 2250, geeicht
- Kalibrator Brüel & Kjaer 4231
- MuUT Frequenzanalysesoftware SPEKT

Vor und nach den Messungen wird die Messkette mittels des Kalibrators überprüft.

Bei den Messungen werden diverse Mittelungs- und Perzentilpegel mit verschiedenen Zeit- und Frequenzbewertungen ermittelt und aufgezeichnet. Ferner wird das Schalldrucksignal digitalisiert, als WAV-Datei abgespeichert. Sie werden später spektral schmalbandig analysiert; ferner werden die Oktavspektren für die Ausbreitungsrechnungen ermittelt.

Die Messungen umfassen – soweit vorhanden - jeweils mindestens einen typischen Betriebszyklus.

2.1.2 Messergebnisse

Die wichtigsten Messwerte - Mittelungspegel L_{Aeq}, 50%-Perzentilpegel, Spitzen- und Hintergrundpegel - sind in der folgenden Tabelle aufgeführt. Enthalten sind ferner Maximal- sowie Taktmaximalpegel. Alle Innengeräusche sind nicht tieffrequent, die Differenz von C- und A-bewerteten Mittelungspegel liegt unterhalb von 10 dB.

Project Name	Beschreibung	Dauer	LAeq	LAF_50	LAF_01	LAF_95	LAFTeq	Leq_C_A	LAFmax
220317 001	Kalib	00:20	93,9	93,9	94,0	93,8	93,9	0,0	93,9
220317 002	Spaltanlage A=2,5m	01:16	88,3	84,7	99,8	82,7	97,9	3,7	101,6
220317 003	Strahlanlage (ohne Strahlen)	02:53	84,4	83,5	90,1	80,8	89,8	6,3	101,5
220317 004	Strahlanlage mit Strahlbetrie	02:01	85,7	85,1	90,4	82,8	89,5	4,9	92,7
220317 005	Strahlkammer 1 m, vor Wand	01:01	88,5	88,3	91,6	87,9	90,6	3,2	92,3
220317 006	Spaltanlage A=2,5 m, Schnelle	01:10	89,5	83,8	101,1	81,6	100,5	3,2	102,6
220317 007	Kolleranlage Innenraum I	01:59	86,9	84,6	94,5	81,1	94,2	6,1	100,6
220317 008	Kolleranlage Rüttelstrecke I	02:04	89,5	88,4	95,1	81,9	95,2	7,3	102,8
220317 009	Kolleranlage Rüttelstrecke I	00:58	88,9	88,3	94,5	82,2	93,0	7,2	95,5
220317 010	Kalib	00:15	93,9	93,9	94,0	93,8	93,9	0,0	93,9

Abb. 4: Messergebnisse Werk Ulmen (Mittelungspegel, Perzentilpegel 50%, 1%, 95%, Taktmaximalpegel, Maximalpegel, Diff. L_{Ceq} - L_{Aeq})

2.1.3 Spaltanlage

In der Spaltanlage werden Steine durch eine hydraulisch angetriebene "Spaltschneide" in kleinere Steine gespalten. Die Spaltfrequenz hängt von der Zielgröße der Steine ab. Typischerweise kann mit rund 5 s zuzüglich von Pausen durch Stau bei Weitertransport oder Sortierung gerechnet werden. Die Schlagstrecke der kompakten Anlage ist mit einer transparenten Haube versehen, diese weist jedoch große offene Bereiche an den Förderbändern auf. Die Schlaggeräusche können daher nur wenig gedämmt werden.

2.1.4 Strahlanlage

Die gesamte Strahlanlage von EJP-TOSCA ist gekapselt ausgeführt. Diese Kapselung ist insbesondere im Bereich der Strahlkammer gut wirksam, sodass der Strahlbetrieb selbst kaum heraushörbar ist.

Im Werk Ulmen ist die Strahlanlage dicht entlang einer Außenwand aufgebaut; die Absaugung steht - anders als in Mittenwalde vorgesehen - im Innenraum. Messungen in Anlagennähe konnten nur im Zwischenraum zur Wand durchgeführt werden, sodass die Messwerte ca. 3 dB zu hoch ausfallen.

2.1.5 Kolleranlage

Die Kolleranlage besteht aus einer offenen, von relativ wenigen "Längsplanken" gebildeten, leicht abschüssigen "Trommel"; konstruktionsbedingt tritt keine großflächige Schallabstrahlung durch Trommelwände auf. Die Trommel wird über ein Förderband kontinuierlich gefüllt. Die Drehgeschwindigkeit hat keine deutliche Auswirkung auf die Schallemission. Die Kolleranlage ist in einer Schallkabine untergebracht.

Laute Vorgänge finden auch außerhalb dieser Kabine auf einer Rüttel- und Bürstenstrecke auf (Kontroll-Arbeitsplatz). Insbesondere beim Abtransport der Steine treten - hauptsächlich bei Rückstau - Geräusche durch das wiederholte Zusammenstoßen der Steine auf.

2.2 Schallquellen Veredlung

2.2.1 Betriebszeit

Vorgesehen ist die Möglichkeit eines 24 h Betriebs. Tatsächlich werden die Anlagen in Abhängigkeit vom gerade "laufenden" Produkt unregelmäßig arbeiten. Lkw-Fahrten sowie Ladeaktivitäten finden ausschließlich während der Tageszeit 6 bis 22 Uhr statt.

2.2.2 Produktionshalle

Die Produktionshalle besteht aus einer Stahlkonstruktion mit Isowänden (Annahme für Rechnung: Hoesch Thermorock, R_w=31 dB). Die Tore sind als Sektionaltore mit R'_w= 19 dB angesetzt. Die Halle ist 10 m hoch und weist im Dach 2 Lichtkuppelbänder auf, die jeweils über eine Länge von 4 m als geöffnet angenommen werden. An den Transportbändern sind jeweils Öffnungsflächen vorhanden, die nur bei Produktionsstillstand der jeweiligen Anlage geschlossen werden. Das Tor zum Hallenzentrum im Osten ist für 50% der Zeit als offen angenommen.

Große Bereiche der Halle werden von Transportbereichen eingenommen. Der mittlere Innenpegel liegt daher außerhalb der direkten Anlagenumgebung deutlich unterhalb von 85 dB(A). Anders als im Werk Ulmen wird die Absauganlage außerhalb der Halle aufgestellt, sodass der Innenpegel reduziert ist.

2.2.3 Stapler

Nach [6] kann die Geräuschemission eines "kleineren" Dieselstaplers (max. Tragfähigkeit \leq 3500 kg, hier mit Tr = 2000 kg angenommen) mit den folgenden detaillierten Emissionsansätzen (Schallleistung pro Arbeitsstunde, $L_{WAeq, 1h}$) beschrieben werden:

• Beladen oder Entladen Lkw, 1 Vorgang: $L_{WAeq, 1h} = 75 \text{ dB}(A)$

• Fahrt mit/ohne Last, pro m Fahrtstrecke: $L_{WAeq, 1h} = (18.5 + 12 lg(Tr)) dB(A)$

Anheben/Abstellen der Last, 1 Vorgang: $L_{WAeq, 1h} = 73 \text{ dB(A)}$

Die Durchlaufzeit pro Paket beträgt etwa 3 bis 5 Minuten. Als Maximalansatz wurden daher je 20 Stapelvorgänge Input & Output sowohl für die Strahlanlage als auch für die Spalt- oder Kolleranlage angesetzt. Der Hintereinander-Durchlauf der verschiedenen Anlagen wurde nicht mindernd berücksichtigt.

2.2.4 Sonstige Anlagen

- Die Schallleistung der Kompressoren bzw. des Kompressorraums ist mit 86 dB(A) berücksichtigt. Die Strahlanlage benötigt für das Strahlen selbst keine Druckluft.
- Für die Absaugung Strahlanlage ist eine Schallleistung (Gehäuse und Auslass) von L_w =101 dB(A) angesetzt.
- Die Absaugung Kollern und Spalten ist mit $L_w = 97 \text{ dB(A)}$ angenommen.

Die Angaben zu den Absauganlagen müssen noch mit den Lieferanten abgestimmt werden.

2.2.5 Verkehr

Mit der Veredelungsanlage wird die Produktpalette des Werks vergrößert, der Ausstoß steigt jedoch nicht. Daher wird mit lediglich bis zu 5 zusätzlichen Lkws pro Tag gerechnet. Da die Verladung für die gestrahlten Produkte jedoch in Zukunft auf der südwestlichen Lagerfläche stattfinden wird, werden die Staplergeräusche sowie die Park- und Rangiergeräusche der Lkws (2x 2 Minuten bei erhöhter Drehzahl (99 dB(A) nach [HLU192]) hier berücksichtigt.

2.3 Schallquellen

Die Lage der Schallquellen ist in Abb. 5 dargestellt; allerdings sind Fassadenschallquellen sowie sich überlagernde Schallquellen in der Aufsicht nicht sichtbar. Die nordöstlich vorgesehenen Zelthallen wurden nur mit ihrer Umfassung berücksichtigt; dementsprechend sind auch Transportwege quer durch möglich.

In Abb. 6 sind die Quellendaten tabellarisch aufgelistet. Da die Innengeräusche über die Hallenflächen abgestrahlt werden, ergeben sich die Frequenzspektren aus der Kombination des Originalgeräuschs mit den Bauteileigenschaften.

Insgesamt wird eine Schallleistung von 104,7 dB(A) tags und 104,4 dB(A) nachts unter der Annahme eines Vollbetriebs ermittelt.

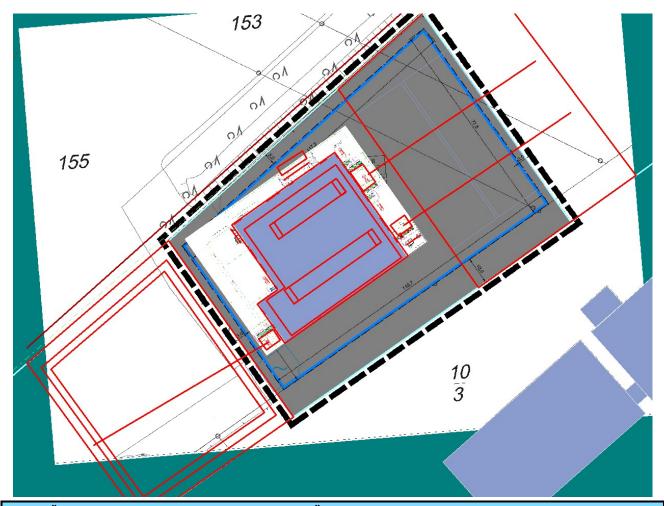


Abb. 5: Übersichtsplan Schallquellen (rot) vor Plänen Änderungsbereich und Halle

Abstellen Spalter IN STAPLER 2 45,1 69,5 69,5 86,0 86,0 0,0 0,0 86,0 86,0 66,4 71,3 73,4 78,5 81,1 81,0 74,6 85,4 Aussfeld Strain IN STAPLER 2 2 8,8 71,4 86,0 69,0 71,0 71,0 71,0 71,0 71,0 71,0 71,0 71	Quellenname	Frequenzspektrum	RQ	L_F_LIN	Emis_T	Emis_N	Lw_T L	.w_N I	Einw_T	Einw_N I	LwIst_T	LwIst_N	Lw_63T	Lw125T	Lw250T	Lw500T	Lw_1kT	Lw_2kT	Lw_4kT I	Lw_8kT
Abstellen Strahl IN STAPLER 2 2, 28, 8 71, 4 71, 4 86, 0 86, 0 6, 0 0, 0 0, 0 86, 0 86, 0 86, 0 86, 0 86, 0 87, 1 73, 73, 4 78, 5 81, 1 81, 0 74, 6 85, 74, 84, 84, 85, 87, 84, 81, 81, 81, 814, 814, 814, 814, 81	Abholen Strahl Out	STAPLER	2	28,8	71,4	71,4	86,0	86,0	0,0	0,0	86,0	86,0	66,4	71,3	73,4	78,5	81,1	81,0	74,6	65,4
Abstellen Strahl IN STAPLER 2 2, 28, 8 71, 4 71, 4 86, 0 86, 0 6, 0 0, 0 0, 0 86, 0 86, 0 86, 0 86, 0 86, 0 87, 1 73, 73, 4 78, 5 81, 1 81, 0 74, 6 85, 74, 84, 84, 85, 87, 84, 81, 81, 81, 814, 814, 814, 814, 81	Abstellen Spalter IN	STAPLER	2	45,1	69,5	69,5	86,0	86,0	0,0	0,0	86,0	86,0	66,4	71,3	73,4	78,5	81,1	81,0	74,6	65,4
Marsford Part Pa	Abstellen Strahl IN	STAPLER	2	28,8	71,4	71,4	86,0	86,0	0,0	0,0	86,0	86,0	66,4	71,3	73,4	78,5	81,1	81,0	74,6	65,4
Ausford Les Strain and Definition Perfolicis Pe	Ausförd. Bruch 1	-DF00132M00068	3	1,6	69,0	69,0	71,0	71,0	0,0	0,0	71,0	71,0	38,3	48,5	60,5	65,2	66,0	65,1	58,9	51,4
Ausford-Leer Spallt.	Ausförd. Bruch 2	-DF00132M00068	3	1,6	69,0	69,0	71,0	71,0	0,0	0,0	71,0	71,0	38,3	48,5	60,5	65,2	66,0	65,1	58,9	51,4
Ausford Leer Spail L. 2 por00132400068 3 3 3,0 69,0 69,0 73,8 73,8 0,0 0,0 73,8 73,8 41,1 51,2 61,2 67,9 68,8 67,9 61,7 54,1 59,2 61,6 61,6 61,6 51,4 59,3 61,6 10,4 11,1 69,2 61,4 51,4 51,4 51,4 51,4 51,4 51,4 51,4 5	Ausförd. Strahlanlag	-DF00129M00068	3	1,9	71,0	71,0	73,8	73,8	0,0	0,0	73,8	73,8	50,2	55,6	63,1	67,4	68,7	66,8	64,7	59,6
Smuthbox	Ausförd.Leer Spalt.1	-DF00132M00068	3	3,0	69,0	69,0	73,8	73,8	0,0	0,0	73,8	73,8	41,1	51,2	63,2	67,9	68,8	67,9	61,6	54,2
Einford Pal. Starthall 0-000129M00068 3 3, 0 71,0 71,0 73,1 73,1 0,0 0,0 73,1 73,1 49,5 54,9 62,3 66,7 68,0 66,1 64,0 68,9 61,0 61,0 63,9 64,0 64,0 65,9 64,0	Ausförd.Leer Spalt.2	-DF00132M00068	3	3,0	69,0	69,0	73,8	73,8	0,0	0,0	73,8	73,8	41,1	51,2	63,2	67,9	68,8	67,9	61,7	54,2
Einfrard. Spalter 1 _ 0-0001324000068	Bruchbox	SPEK 100A	1	11,1	69,5	69,5	80,0	80,0	-12,6	-12,6	67,4	67,4	34,2	44,3	51,8	57,2	60,4	61,6	61,4	59,3
EINFORC SPATER 2 — 0-F001329000068 3 3 3,0 74,0 74,0 78,8 78,8 78,8 78,8 46,1 56,2 68,2 72,9 73,8 72,9 65,7 59,2 EINFORCH STAPHEN — 0-F001299000068 3 2,4 77,0 77,0 80,8 80,8 80,8 0,0 0,0 8,8 80,8 80	Einförd. Pal.Strahl	-DF00129M00068	3	1,6	71,0	71,0	73,1	73,1	0,0	0,0	73,1	73,1	49,5	54,9	62,3	66,7	68,0	66,1	64,0	58,8
Einforder Strahlen — Der001299000088 3 2, 4 77,0 77,0 80,8 80,8 90,0 0,0 88,2 89,8 97,1 52,5 70,0 74,4 75,7 73,8 71,7 65,5 Entile Entelements Methods Manufacker Miley 2473 6 2 347,8 87,6 0,0 103,0 103,0 -13,8 0,0 0,0 88,2 89,8 97,1 52,5 70,0 84,6 87,7 87,8 73,8 71,7 65,5 Entile Entelements Methods Manufacker Miley 2473 6 2 347,8 16,0 89,2 89,2 89,0 97,0 97,0 97,0 97,0 73,3 78,7 86,2 90,6 91,9 90,0 97,0 97,0 77,3 78,7 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Einförd. Spalter 1	-DF00132M00068	3	3,0	74,0	74,0	78,8	78,8	0,0	0,0	78,8	78,8	46,1	56,2	68,2	72,9	73,8	72,9	66,6	59,2
Entlerem Bruchbox RADLADER HLFU 247-36 2 34,7 87,6 70,0 103,0 1,0 13,0 0,0 13,8 0,0 89,2 0,0 16,8 4 77,0 80,6 83,7 84,4 80,9 74,1 55,9 Entstaubung Tosca 220317 003 s01 1 6,0 89,2 89,2 97,0 101,0 10,0 0,0 10,0 10,0 10,0 77,3 82,7 80,2 90,6 91,9 90,0 84,6 83,7 84,4 80,9 74,1 55,9 Entstaubung Tosca 220317 003 s01 1 6,0 89,2 89,2 91,0 101,0 10,0 0,0 10,0 10,0 10,0 77,3 82,7 80,7 90,2 94,6 95,9 94,0 91,9 86,7 Fensteraband so 0-F00129900031 3 39,1 52,1 52,1 68,1 68,1 68,1 68,1 68,1 57,3 56,7 65,1 62,5 53,8 44,9 84,8 82,14 Hallemdand 0-F00129900031 3 174,2 45,2 45,2 77,8 77,7 87,8 0,0 0,0 8,1 88,1 87,1 7,8 71,9 71,3 71,8 10,1 67,5 10,5 57,4 14,2 14,1 81,1 81,1 81,1 81,1 81,1 81,1 81,1	Einförd. Spalter 2	-DF00132M00068	3	3,0	74,0	74,0	78,8	78,8	0,0	0,0	78,8	78,8	46,1	56,2	68,2	72,9	73,8	72,9	66,7	59,2
Entstatubk of lerspart 2 20317 003	Einförder Strahlen	-DF00129M00068	3	2,4	77,0	77,0	80,8	80,8	0,0	0,0	80,8	80,8	57,1	62,5	70,0	74,4	75,7	73,8	71,7	66,5
Enstatuhung Tosca 20317 003 s01 1 6 6,0 93,2 93,2 101,0 101,0 101,0 0,0 0,0 101,0 101,0 77,3 82,7 90,2 94,6 95,9 94,0 91,9 86,7 Pensterhands o -pro0129900031 3 3 31,5 52,1 68,1 68,1 0,0 0,0 68,1 68,1 57,8 57,8 57,8 57,8 47,8 48,8 -21,4 Hallendach -pro0129900031 2 1798,9 45,2 45,2 77,8 77,8 77,8 77,8 77,8 77,8 77,8 71,8 71	Entleeren Bruchbox	RADLADER HLFU 247-36	2	34,7	87,6	0,0	103,0	0,0	-13,8	0,0	89,2	0,0	68,4	77,0	80,6	83,7	84,4	80,9	74,1	65,9
Fensterbard SO — DF00129M00031 3 3 39,1 52,1 52,1 68,1 68,1 0,0 0,0 68,1 68,1 67,8 57,8 67,6 65,1 62,5 53,8 44,9 48,8 -21,4 Hallendach — DF00129M00031 3 1774,2 45,2 45,2 77,8 77,8 77,0 0,0 0,0 77,8 77,9 71,9 71,3 71,8 71,1 71,7 69,1 67,4 61,5 57,4 47,3 Hallenwand — DF00129M00031 3 1774,2 45,2 45,2 77,8 77,7 0,0 0,0 77,7 77,7 77,7 7,7 7,7 7,7	Entstaub KollerSpalt	220317 003 S01	1	6,0	89,2	89,2	97,0	97,0	0,0	0,0	97,0	97,0	73,3	78,7	86,2	90,6	91,9	90,0	87,9	82,7
Hallendach — 0-F00129M00031 2 1798,9 45,2 45,2 77,8 77,8 0,0 0,0 77,8 77,8 71,8 71,9 77,3 71,8 69,1 67,5 61,6 57,4 47,3 Hallenmand — D-F00129M00031 3 1774,2 45,2 47,2 77,7 77,7 0,0 0,0 0,0 77,7 77,8 77,8 71,8 71,7 77,7 77,7 77,8 71,8 71	Entstaubung Tosca	220317 003 S01	1	6,0	93,2	93,2	101,0	101,0	0,0	0,0	101,0	101,0	77,3	82,7	90,2	94,6	95,9	94,0	91,9	86,7
Hallenwand -DF00129M00031 3 1774,2 45,2 45,2 77,7 77,7 0,0 0,0 77,7 77,7 77,7 77,7	Fensterband SO	-DF00129M00033	3	39,1	52,1	52,1	68,1	68,1	0,0	0,0	68,1	68,1	57,3	56,7	65,1	62,5	53,8	44,9	48,8	-21,4
Kompressorraum Komp	Hallendach	-DF00129M00031	2	1798,9	45,2	45,2	77,8	77,8	0,0	0,0	77,8	77,8	71,9	71,3	71,8	69,1	67,5	61,6	57,4	47,3
Kompressorraum Komp	Hallenwand	-DF00129M00031	3	1774,2	45,2	45,2	77,7	77,7	0,0	0,0	77,7	77,7	71,8	71,2	71,7	69,1	67,4	61,5	57,4	47,2
Lager SW Abstellen STAPLER 2 5000,3 49,0 49,0 86,0 86,0 0,0 0,0 86,0 86,0 66,4 71,3 73,4 78,5 81,1 81,0 74,6 65,4 Lichtband Nord —DF00132M00066 2 174,6 51,2 51,2 73,6 73,6 73,6 0,0 0,0 78,3 73,6 52,7 61,9 68,9 69,6 65,4 59,5 49,3 41,8 Lichtband Sund —DF00130M00066 2 23,9 66,5 64,5 64,5 78,3 78,7 74,0 74,0 74,0 74,0 74,0 74,0 74,0 74	Kompressorraum	KOMPRESSORRAUM TWE	3	9,0	76,5	76,5	86,1	86,1	0,0	0,0	86,1	86,1	50,5	57,2	67,9	69,6	72,3	85,2	75,6	
Lichtband Nord offen —DF00132M00065 2 174,6 51,2 51,2 73,6 73,6 0,0 0,0 73,6 73,6 52,7 61,9 68,9 69,6 65,4 59,5 49,3 41,8 Lichtband Nord offen —DF00132M00066 2 230,1 50,4 50,4 74,0 74,0 0,0 0,0 74,0 61,7 65,5 67,8 69,1 66,3 60,4 54,9 50,0 Lichtband Sued —DF00130M00066 2 230,1 50,4 50,4 74,0 74,0 0,0 0,0 74,0 61,7 65,5 67,8 69,1 66,3 60,4 54,9 50,0 Lichtband Sued offen —DF00130M00066 2 33,9 65,8 65,8 65,8 79,6 79,6 79,6 79,6 79,6 79,6 79,6 79,6	Lager NO Anheben	STAPLER	2	6309,6	51,0	51,0	89,0	89,0	0,0	0,0	89,0	89,0	69,4	74,3	76,4	81,5	84,1	84,0	77,6	68,4
Lichtband Nord offen -DF00132M00066 2 23,9 64,5 64,5 78,3 78,3 0,0 0,0 78,3 78,3 49,1 56,1 67,8 72,1 72,9 71,9 65,7 68,2 Lichtband Sued -DF00130M00066 2 23,9 65,8 65,8 79,6 0,0 0,0 74,0 74,0 61,7 65,5 67,8 69,1 66,3 60,4 54,9 50,0 Lichtband Sued offen -DF00130M00066 2 23,9 65,8 65,8 79,6 79,6 0,0 0,0 79,6 79,6 79,6 79,6 79,6 79,6 79,6 79,6	Lager SW Abstellen	STAPLER	2	5000,3	49,0	49,0	86,0	86,0	0,0	0,0	86,0	86,0	66,4	71,3	73,4	78,5	81,1	81,0	74,6	65,4
Lichtband sued DF00130M00065 2 230,1 50,4 50,4 74,0 74,0 0,0 0,0 74,0 74,0 61,7 65,5 67,8 69,1 66,3 60,4 54,9 50,0 Lichtband sued offer DF0013M00066 2 23,9 65,8 65,8 79,6 79,6 79,6 79,6 79,6 79,6 79,6 79,6 79,6 Like Lager Ausliefern KW HESSEN 1000 UMD 2 3198,9 63,9 0,0 90,0 0,0 0,0 1,1 0,0 87,2 0,0 63,5 69,5 73,9 77,5 84,3 81,4 71,7 64,2 Stapler Ausliefern STAPLER 1 72,9 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Strahler N STAPLER 1 72,9 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Strahler out STAPLER 1 73,5 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 STAPLER 1 73,5 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 STAPLER 1 73,5 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 STAPLER 1 73,5 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 STAPLER 1 73,5 74,1 74,1 92,8 92,8 0,0 0,0 0,0 67,0	Lichtband Nord	-DF00132M00065	2	174,6	51,2	51,2	73,6	73,6	0,0	0,0	73,6	73,6	52,7	61,9	68,9	69,6	65,4	59,5	49,3	41,8
Lichtband Sued offen DF00130M00066 2 23,9 65,8 65,8 79,6 79,6 79,6 79,6 79,6 79,6 79,6 79,6 79,6 56,9 58,6 65,6 70,5 72,5 71,6 70,1 75,2 Lkw Lager Ausliefern Lkw HESSEN 1000 UMD 2 3198,9 63,9 9,0 99,0 0,0 99,0 0,0 0,0 0,0 87,8 0,0 68,2 73,1 77,5 84,3 81,8 71,7 64,2 64,2 54,5 73,5 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 72,5	Lichtband Nord offen	-DF00132M00066	2	23,9	64,5	64,5	78,3	78,3	0,0	0,0	78,3	78,3	49,1	56,1	67,8	72,1	72,9	71,9	65,7	68,2
Lkw Lager Ausliefern Lkw HESSEN 1000 UMD 2 3198,9 63,9 0,0 99,0 0,0 -11,8 0,0 87,2 0,0 63,5 69,5 73,9 77,5 84,3 81,8 71,7 64,2 51,9 1,0 1,0 1,1	Lichtband Sued	-DF00130M00065	2	230,1	50,4	50,4	74,0	74,0	0,0	0,0	74,0	74,0	61,7	65,5	67,8	69,1	66,3	60,4		50,0
Stapler Ausliefern STAPLER 2 3872,6 51,9 0,0 87,8 0,0 0,0 0,0 87,8 0,0 68,2 73,1 75,2 80,3 82,9 82,8 76,4 67,2 Stapler Stapler IN STAPLER 1 72,9 74,1 74,1 92,8 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Strahler IN STAPLER 1 72,9 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Strahler out STAPLER 1 73,5 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Richard 1 -DF00133M00081 3 16,0 55,0 55,0 67,0 67,0 67,0 0,0 0,0 67,0 67,0 41,7 59,6 62,2 60,1 58,3 58,1 47,8 35,2 Tor Kollertrommel -DF00133M00081 3 16,0 55,0 55,0 67,0 67,0 67,0 0,0 0,0 67,0 67,0 41,7 59,6 62,2 60,1 58,3 58,1 47,8 35,2 Tor NO Tosca -DF00129M0060 3 16,0 58,8 58,8 70,9 70,9 0,0 0,0 70,9 70,9 55,4 55,8 60,2 63,6 64,9 65,0 61,9 54,7 Tor NOr Tosca Offen -DF00132M0060 3 12,0 52,8 52,8 63,6 63,6 0,0 0,0 0,0 63,6 63,6 39,1 44,3 53,2 56,9 57,8 58,9 51,7 42,2 Tor NW -DF00132M00060 3 12,0 52,8 52,8 63,6 63,6 0,0 0,0 0,0 63,6 63,6 39,1 44,3 53,2 56,9 57,8 58,9 51,7 42,2 Tor NW -DF00132M00060 3 12,0 52,8 52,8 66,6 66,6 60,0 0,0 63,6 63,6 39,1 44,3 53,2 56,9 57,8 58,9 51,7 42,2 Tor SW Freiraum -DF00129M00060 3 12,0 50,8 50,8 61,6 61,6 60,0 0,0 61,6 66,6 65,1 51,0 51,5 55,9 59,3 60,6 60,7 57,6 50,4 50 SW Freiraum -DF00129M00060 3 12,0 50,8 50,8 61,6 61,6 61,6 0,0 0,0 44,6 44,6 24,2 25,3 31,3 35,0 39,9 41,0 30,9 18,4 10 N N Spalter -DF00132M00062 3 2,0 47,7 47,7 50,7 50,7 50,7 0,0 0,0 50,7 50,7 39,3 35,7 37,1 40,6 45,8 45,9 39,8 29,6 70,9 50,7 50,7 50,7 50,7 50,7 50,7 50,7 50,7	Lichtband Sued offen	-DF00130M00066	2	23,9	65,8	65,8	79,6	79,6	0,0	0,0	79,6	79,6	56,9	58,6	65,6	70,5	72,5	71,6	70,1	75,2
Stapler Spalter IN STAPLER 1 72,9 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Strahler Out STAPLER 1 72,9 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Strahler out STAPLER 1 73,5 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Strahler out STAPLER 1 75,5 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Strahler out STAPLER 1 75,5 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Strahler out STAPLER 1 75,5 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Strahler out STAPLER 1 75,5 75,5 75,5 75,5 75,5 75,5 75,5 75	Lkw Lager Ausliefern	LKW HESSEN 1000 UMD	2	3198,9	63,9	0,0	99,0	0,0	-11,8	0,0	87,2	0,0	63,5	69,5	73,9	77,5	84,3	81,8	71,7	64,2
Stapler Strahler IN STAPLER 1 72,9 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 Stapler Strahler out STAPLER 1 73,5 74,1 74,1 92,8 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 TOR KOÎLER RÜTELIN -DFOOLI33MOOOSEL 3 16,0 55,0 55,0 67,0 67,0 67,0 0,0 0,0 67,0 67,0 41,7 59,6 62,2 60,1 58,3 58,1 47,8 35,2 TOR NO TOSCA -DFOOLI29MOOOGO 3 16,0 58,8 58,8 70,9 70,9 70,9 0,0 0,0 70,9 70,9 70,9 55,4 555,8 60,2 63,6 64,9 65,0 61,9 54,7 TOR NOT OSCA -DFOOLI3MOOOGO 3 12,0 52,8 52,8 63,6 63,6 63,6 0,0 0,0 63,6 63,6 39,1 44,3 53,2 56,9 57,8 58,9 51,7 42,2 TOR NW -DFOOLI3MOOOGO 3 11,8 55,8 55,8 60,6 66,6 60,0 0,0 63,6 63,6 39,1 44,3 53,2 56,9 57,8 58,9 91,7 42,2 TOR SW Freiraum -DFOOLI29MOOOGO 3 11,8 55,8 55,8 60,6 66,6 60,0 0,0 67,0 67,0 67,0 67,0	Stapler Ausliefern	STAPLER	2	3872,6	51,9	0,0	87,8	0,0	0,0	0,0	87,8	0,0	68,2	73,1	75,2	80,3	82,9	82,8	76,4	67,2
Stapler Strahler out STAPLER 1 73,5 74,1 74,1 92,8 92,8 0,0 0,0 92,8 92,8 73,2 78,1 80,2 85,3 87,9 87,8 81,4 72,2 TOR KOller Rütteln -DF00133M00081 3 16,0 55,0 55,0 67,0 67,0 67,0 0,0 0,0 67,0 67,0 41,7 59,6 62,2 60,1 58,3 58,1 47,8 35,2 TOR KOllertrommel -DF00133M00081 3 16,0 55,0 55,0 55,0 67,0 67,0 67,0 0,0 0,0 67,0 67,0 41,7 59,6 62,2 60,1 58,3 58,1 47,8 35,2 TOR NO TOSCA -DF00129M00060 3 16,0 58,8 58,8 70,9 70,9 70,9 70,9 70,9 55,4 55,8 60,2 63,6 64,9 65,0 61,9 54,7 TOR NOT OF NOT -DF00132M00060 3 12,0 52,8 52,8 63,6 63,6 63,6 0,0 0,0 0,0 63,6 63,6 39,1 44,3 53,2 56,9 57,8 58,9 51,7 42,2 TOR NW -DF00132M00060 3 11,8 55,8 55,8 66,6 66,6 66,6 67,0 0,0 0,0 67,0 67,0 47,1 57,0 57,0 50,7 50,7 50,7 50,7 50,7 50,7	Stapler Spalter IN	STAPLER	1	72,9	74,1	74,1	92,8	92,8	0,0	0,0	92,8	92,8	73,2	78,1	80,2	85,3	87,9	87,8	81,4	72,2
TOR KOller Rütteln -DF00133M00081 3 16,0 55,0 55,0 67,0 67,0 67,0 0,0 0,0 67,0 67,0 67,0	Stapler Strahler IN	STAPLER	1	72,9	74,1	74,1	92,8	92,8	0,0	0,0	92,8	92,8	73,2	78,1	80,2	85,3	87,9	87,8	81,4	72,2
Tor Kollertrommel	Stapler Strahler Out	STAPLER	1	73,5	74,1	74,1	92,8	92,8	0,0	0,0	92,8	92,8	73,2	78,1	80,2	85,3	87,9	87,8	81,4	72,2
TOR NO TOSCA	Tor Koller Rütteln	-DF00133M00081	3	16,0	55,0	55,0	67,0	67,0	0,0	0,0	67,0	67,0	41,7	59,6	62,2	60,1	58,3	58,1	47,8	35,2
Tor No Tosca offen	Tor Kollertrommel	-DF00133M00081	3	16,0	55,0	55,0	67,0	67,0	0,0	0,0	67,0	67,0	41,7	59,6	62,2	60,1	58,3	58,1	47,8	35,2
Tor Nord	Tor NO Tosca	-DF00129M00060	3	16,0	58,8	58,8	70,9	70,9	0,0	0,0	70,9	70,9	55,4	55,8	60,2	63,6	64,9	65,0	61,9	54,7
Tor NW -DF00132M00060 3 16,0 58,8 58,8 70,8 70,8 0,0 0,0 70,8 70,8 46,3 51,5 60,5 64,2 65,0 66,1 58,9 49,4 70,5 80 Umreifung -DF00129M00060 3 11,8 55,8 55,8 66,6 66,6 0,0 0,0 66,6 66,6 51,1 51,5 55,9 59,3 60,6 60,7 57,6 50,4 70,8 80,0 0,0 66,6 66,6 51,1 51,5 55,9 59,3 60,6 60,7 57,6 50,4 70,8 80,0 0,0 61,6 61,6 46,1 46,5 51,0 54,4 55,7 55,8 52,7 45,5 70,0 0,0 0,0 44,6 44,6 24,2 25,3 31,3 35,0 39,9 41,0 30,7 18,3 70,8 80,0 0,0 44,6 44,6 24,2 25,3 31,3 35,0 39,9 41,0 30,7 18,3 70,8 80,0 0,0 44,7 44,7 50,7 50,7 50,7 50,7 50,7 39,3 35,7 37,2 40,6 45,9 46,0 39,9 29,7 70,0 0,0 44,7 44,7 44,7 44,7 44,7 44,	Tor NO Tosca offen	-DF00129M00068	3	16,0	77,0	77,0	89,0	89,0	-3,0	-3,0	86,0	86,0	62,4	67,8	75,2	79,6	80,9	79,0	76,9	71,7
Tor SO Umreifung	Tor Nord	-DF00132M00060	3	12,0	52,8	52,8	63,6	63,6	0,0	0,0	63,6	63,6	39,1	44,3	53,2	56,9	57,8	58,9	51,7	42,2
Tor SW Freiraum	Tor NW	-DF00132M00060	3	16,0	58,8	58,8	70,8	70,8	0,0	0,0	70,8	70,8	46,3	51,5	60,5	64,2	65,0	66,1	58,9	49,4
Tür N Spalter	Tor SO Umreifung	-DF00129M00060	3	11,8	55,8	55,8	66,6	66,6	0,0	0,0	66,6	66,6	51,1	51,5	55,9	59,3	60,6	60,7	57,6	50,4
Tür NO Tosca	Tor SW Freiraum	-DF00129M00060	3	12,0	50,8	50,8	61,6	61,6	0,0	0,0	61,6	61,6	46,1	46,5	51,0	54,4	55,7	55,8	52,7	45,5
Tür NW -DF00132M00062 3 2,0 41,7 44,7 44,7 0,0 0,0 44,7 44,7 24,3 25,5 31,4 35,2 40,0 41,1 30,9 18,4 Tür NW -DF00133M00062 3 2,0 47,7 47,7 50,7 50,7 0,0 0,0 50,7 50,7 31,0 37,1 38,3 41,5 45,6 47,0 35,8 21,2 Tür SO Tosca -DF00129M00062 3 2,0 47,7 47,7 50,7 50,7 0,0 0,0 50,7 50,7 39,3 35,7 37,1 40,5 45,8 45,9 39,8 29,6 Tür SO Umreifung -DF00129M00062 3 1,9 44,7 47,6 47,6 0,0 0,0 47,6 47,6 36,2 32,6 34,1 37,4 42,8 42,8 36,7 26,6	Tür N Spalter	-DF00132M00062	3	1,9	41,7	41,7	44,6	44,6	0,0	0,0	44,6	44,6	24,2	25,3	31,3	35,0	39,9	41,0	30,7	18,3
Tür NW -DF00133M00062 3 2,0 47,7 47,7 50,7 50,7 0,0 0,0 50,7 50,7 31,0 37,1 38,3 41,5 45,6 47,0 35,8 21,2 Tür SO Tosca -DF00129M00062 3 2,0 47,7 47,7 50,7 50,7 50,7 0,0 0,0 50,7 50,7 39,3 35,7 37,1 40,5 45,8 45,9 39,8 29,6 Tür SO Umreifung -DF00129M00062 3 1,9 44,7 44,7 47,6 47,6 0,0 0,0 47,6 47,6 36,2 32,6 34,1 37,4 42,8 42,8 36,7 26,6	Tür NO Tosca	-DF00129M00062	3	2,0	47,7	47,7	50,7	50,7	0,0	0,0	50,7	50,7	39,3	35,7	37,2	40,6	45,9	46,0	39,9	29,7
Tür SO Tosca -DF00129M00062 3 2,0 47,7 47,7 50,7 50,7 0,0 0,0 50,7 50,7 39,3 35,7 37,1 40,5 45,8 45,9 39,8 29,6 Tür SO Umreifung -DF00129M00062 3 1,9 44,7 44,7 47,6 47,6 0,0 0,0 47,6 47,6 36,2 32,6 34,1 37,4 42,8 42,8 36,7 26,6	Tür NW	-DF00132M00062	3	2,0	41,7	41,7	44,7	44,7	0,0	0,0	44,7	44,7	24,3	25,5	31,4	35,2	40,0	41,1	30,9	18,4
Tür SO Umreifung -DF00129M00062 3 1,9 44,7 44,7 47,6 47,6 0,0 0,0 47,6 47,6 36,2 32,6 34,1 37,4 42,8 42,8 36,7 26,6	Tür NW	-DF00133M00062	3	2,0	47,7	47,7	50,7	50,7	0,0	0,0	50,7	50,7	31,0	37,1	38,3	41,5	45,6	47,0	35,8	21,2
	Tür SO Tosca	-DF00129M00062	3	2,0	47,7	47,7	50,7	50,7	0,0	0,0	50,7	50,7	39,3	35,7	37,1	40,5	45,8	45,9	39,8	29,6
Anzahl/Summe 45,0 42,0 104,7 104,4 83,4 88,2 93,5 97,9 99,6 98,5 94,7 89,1	Tür SO Umreifung	-DF00129M00062	3	1,9	44,7	44,7	47,6	47,6	0,0	0,0	47,6	47,6	36,2	32,6	34,1	37,4	42,8	42,8	36,7	26,6
	Anzahl/Summe				45,0	42,0					104,7	104,4	83,4	88,2	93,5	97,9	99,6	98,5	94,7	89,1

Abb. 6: Schallleistungen (T:Tag, N:Nacht; RQ: 1=Linie, 2=Fläche; L_F: Länge m bzw. Fläche m²; Lw: Schallleistung; Einw: Einwirkungszeit in dB; LwIst: Schallleistung inkl. Zeitkorrektur, mit Oktavpegeln)

2.4 Digitales Modell, Berechnung

Die Berechnungen werden mit dem Programmsystem LIMA der Stapelfeldt Ingenieurges. mbH, Dortmund, in der aktuellen Version 2022 durchgeführt; die Berechnungsergebnisse sind qualitätskontrolliert nach DIN 45687. Aufbauend auf den vom Auftraggeber zur Verfügung gestellten Lageplänen und Ansichten sowie Daten des Geoportals [2] wird ein digitales Modell des Betriebs nebst Umgebung erstellt. Danach werden die schalltechnisch wichtigen Elemente der Anlagen in das Modell eingesetzt.

Die Einzelpunkt-Berechnungen erfolgen nach den Regeln für die "detaillierte Prognose" der TA Lärm / ISO9613-2 für Oktavpegel unter Berücksichtigung von Reflexionen bis zur zweiten Ordnung.

2.5 Einschub: Pegel und Schallausbreitung

Pegel repräsentieren eine logarithmische Skala. Eine Pegelerhöhung um 3 dB entspricht daher einer Verdopplung der Schallenergie. Das menschliche Ohr kann Pegelunterschiede in direktem Vergleich ab etwa 1 dB ohne Weiteres wahrnehmen, sie werden deutlich wahrgenommen ab ca. 3 dB und bei etwa 10 dB als Verdopplung empfunden.

Die A-Bewertung stellt eine frequenzabhängige Bewertung des Schallsignals dar, bei der der mittlere Frequenzbereich hervorgehoben und tiefe sowie hohe Frequenzen abgesenkt werden. Sie soll die Frequenzabhängigkeit des menschlichen Hörempfindens nachempfinden.

Das menschliche Ohr nimmt den Schalldruckpegel am jeweiligen Ort wahr (Schallimmission). Dieser resultiert aus der Schallabstrahlung der Schallquellen (Schallemission), die am besten als Schallleistung L_w anzugeben ist. Ist die räumliche Ausdehnung der Schallquelle klein gegenüber den vorliegenden Abständen zwischen Schallquelle und Immissionsorten nimmt die Schallimmission im Freifeld mit dem Quadrat des Abstands ab und die Pegelabnahme beträgt 6 dB pro Abstandsverdopplung ($20 * log_{10} (r / lm)$).

Ein Fahrweg oder eine Straße stellt eine Linienquelle dar; diese kann als eine Aneinanderreihung von Punktquellen mit kleinem Abständen untereinander verstanden werden. Die Schallimmission einer Linienquelle nimmt nur proportional zur Entfernung ab und die Pegelabnahme beträgt nur 3 dB pro Abstandsverdopplung (10 * log₁₀ (r / 1m)).

Hinzu kommen jeweils weitere Dämpfungen durch Luftabsorption und Abschirmungen.

3 Ergebnisse

3.1 Flächenbezogene Schallleistungen

Mit der Festlegung auf "Fläche für Sozial- und Verwaltungsgebäude" (A) sowie "Lagerflächen" (B) definiert der Bebauungsplan de facto ein eingeschränktes Industriegebiet. Dementsprechend können für diese nach den Ausführungen in Abschnitt 1.4 flächenbezogene Schallleistungspegel (FLSP) von

angesetzt werden. Dies erlaubt ohne Weiteres den üblichen nächtlichen Lagerbetrieb, während Anund Auslieferungen nur tagsüber stattfinden. Das Änderungsgebiet wird dagegen als vollwertiges

Industriegebiet mit 65 dB(A) tags und nachts

berücksichtigt.

Abb. 8 zeigt die Schallimmission nachts aus dem Plangebiet einschließlich Änderungsbereich in 8 m Höhe über Grund als Farbkarte (Kartengrundlage [2]). Die Berechnungen wurden auf der Basis der ISO 9613 [7], d.h. unter Berücksichtigung der üblichen Ausbreitungsdämpfungen einschließlich vorhandener Bebauung auf dem Werksgelände ausgeführt. Als Emissionshöhe wurde 0,5 m über Grund (Stapler) angenommen. Die gesamte Umgebung ist weitgehend eben, nur die Wohngebiete in Telz liegen auf einem Hügel.

In Telz und Mittenwalde wird der Orientierungswert für Reine Wohngebiete (hellgrün) weit unterschritten. In Richtung Südosten macht sich die Abschirmung durch die vorhandenen KANN-Gebäude bemerkbar. An den Häusern Am Kanal liegen die Pegel unterhalb von 45 dB(A).

Der Bebauungsplan bleibt daher auch nach der Änderung mit der schutzbedürftigen Nutzung der Umgebung verträglich.

3.1.1 <u>Ergebnistabellen</u>

In der folgenden Tabelle sind die Beurteilungspegel nach TA Lärm an ungünstig gelegenen Häusern für die Tages- und Nachtzeit wiedergegeben.

Aufp	Geb_Name	Aufp_Name	X	Υ :	Z	Immi_T In	nmi_N
I_01	AM KANAL 2	2.0G NW -	808,5230	5798,5066	45,0	49,5	42,6
I_02	AM KANAL 1A	1.0G NW -	808,5891	5798,5670	42,2	51,1	44,1
I_03	MITTENW. ALLEE 1C	1.0G SO -	807,0845	5798,3033	64,8	35,4	26,9
I_04	MITTENW. AUE 26	1.OG WSW-	809,5665	5799,5429	42,2	35,7	27,3

Abb. 7: Immissionsorte (ungünstigstes Geschoss) mit Koordinaten und Beurteilungspegeln nach [TAL]

Einzelheiten der Berechnung sind in Abb. 9 und Abb. 10 zusammengestellt.

G22052-1 KANN Mittenwalde, 25.06.22

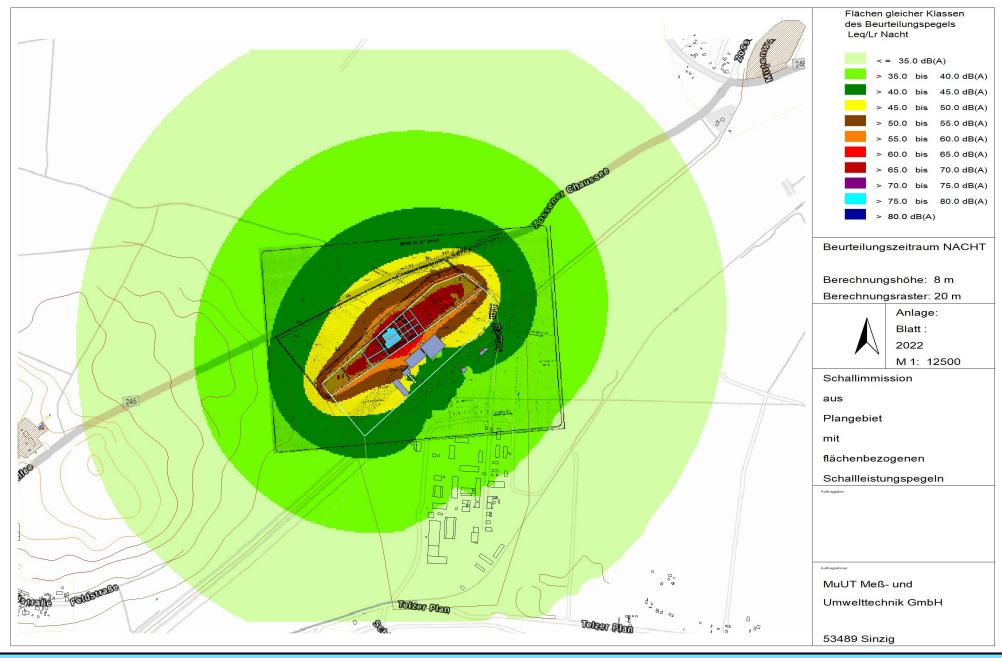


Abb. 8: Schallimmission Nacht in 8 m Höhe aus Bebauungsplangebiet auf der Basis flächenbezogener Schallleistungspegel, Kartengrundlage [2]

Qu_Nr	Quellenname	Frequenzspektrum	RQ	L_F_LIN	Emis_T	Emis_N	Lw_T	Lw_N	Lw_63T	Lw125T	Lw250T	Lw500T	Lw_1kT	Lw_2kT	Lw_4kT	Lw_8kT
1	GI 1998 NO	STAPLER	2	25351,3	65,0	57,5	109,0	101,5	89,4	94,3	96,4	101,5	104,1	104,0	97,6	88,4
2	GI 1998 SW	STAPLER	2	15885,5	65,0	57,5	107,0	99,5	87,4	92,3	94,4	99,5	102,1	102,0	95,6	86,4
3	GI 2022 (C)	STAPLER	2	10495,4	65,0	65,0	105,2	105,2	85,6	90,5	92,6	97,7	100,3	100,2	93,8	84,6
10001	Anzahl/Summe				3,0	3,0			92,5	97,4	99,5	104,6	107,2	107,1	100,7	91,5

Abb. 9: Flächenbezogene Schallleistungen (Emis), Fläche (L F Lin) und resultierende Schallleistung (Lw), T/N: Tag/Nacht; mit Oktavpegeln tags

Aufp	Geb_Name	A ufp_N	ame	Q uelle	min_Sm	hm	H_diff	D0	A fol I	OI	A bar	A div	Aatm	Agr	cmet	cmet_N	Ruhe_T	Refl_T	Immi_T	Refl_N I	mmi_N
I_01	AM KANAL 2	2.0G	NW -	GI 1998 NO	183,7	4,4	7,6	0,0	0,0	0,0	-0,9	-58,6	-1,5	2,3	-1,3	-1,3	0,0	0,0	49,0	0,0	41,5
I_01	AM KANAL 2	2.0G	NW -	GI 1998 SW	268,7	4,4	7,7	0,0	0,0	0,0	-6,0	-62,0	-1,9	2,8	-1,5	-1,5	0,0	0,0	38,4	0,0	30,9
I_01	AM KANAL 2	2.0G	NW -	GI 2022 (C)	203,3	4,4	7,6	0,0	0,0	0,0	-11,4	-59,4	-0,9	2,2	-1,3	-1,3	0,0	0,0	34,4	0,0	34,4
I_01	AM KANAL 2	2.0G	NW -	Anzahl/Summe															49,5		42,6
I_02	AM KANAL 1A	1.0G	NW -	GI 1998 NO	173,9	3,0	4,8	0,0	0,0	0,0	-0,1	-58,0	-1,4	2,8	-1,5	-1,5	0,0	0,0	50,8	0,0	43,3
I_02	AM KANAL 1A	1.0G	NW -	GI 1998 SW	327,0	3,0	4,9	0,0	0,0	0,0	-7,0	-63,7	-2,1	3,7	-1,7	-1,7	0,0	0,0	36,2	0,0	28,7
I_02	AM KANAL 1A	1.0G	NW -	GI 2022 (C)	244,0	3,0	4,8	0,0	0,0	0,0	-9,1	-60,5	-1,4	3,2	-1,6	-1,6	0,0	0,0	35,8	0,0	35,8
I_02	AM KANAL 1A	1.0G	NW -	Anzahl/Summe															51,1		44,1
I_03	MITTENW. ALLEE 1C	1.0G	SO -	GI 1998 NO	1318,2	7,4	27,4	0,0	0,0	0,0	-4,1	-73,0	-6,4	1,1	-1,9	-1,9	3,6	0,0	28,2	0,0	17,1
I_03	MITTENW. ALLEE 1C	1.0G	SO -	GI 1998 SW	990,5	5,1	27,6	0,0	0,0	0,0	0,0	-71,4	-4,9	0,9	-1,9	-1,9	3,6	0,0	33,3	0,0	22,2
I_03	MITTENW. ALLEE 1C	1.0G	SO -	GI 2022 (C)	1204,6	6,7	27,5	0,0	0,0	0,0	-2,1	-72,6	-5,4	1,2	-1,9	-1,9	3,6	0,0	28,0	0,0	24,4
I_03	MITTENW. ALLEE 1C	1.0G	SO -	Anzahl/Summe															35,4		26,9
I_04	MITTENW. AUE 26	1.0G	WSW-	GI 1998 NO	1253,6	3,0	4,9	0,0	0,0	0,0	-0,1	-73,4	-5,6	1,9	-1,9	-1,9	3,6	0,0	33,5	0,0	22,4
I_04	MITTENW. AUE 26	1.0G	WSW-	GI 1998 SW	1636,7	3,0	4,9	0,0	0,0	0,0	0,0	-75,5	-6,5	2,3	-1,9	-1,9	3,6	0,0	29,0	0,0	17,9
I_04	MITTENW. AUE 26	1.0G	WSW-	GI 2022 (C)	1513,5	3,0	4,8	0,0	0,0	0,0	0,0	-74,6	-6,1	2,2	-1,9	-1,9	3,6	0,0	28,4	0,0	24,8
I_04	MITTENW. AUE 26	1.0G	WSW-	Anzahl/Summe															35,7		27,3
I_04	MITTENW. AUE 26	1.0G	W	SW-	SW- Anzahl/Summe 35,7	SW- Anzahl/Summe 35,7															

Abb. 10: Berechnungsdaten Schallimmission für flächenbezogene Schallleistungen, Ruhezeit-Zuschlag für Sonntage
T/N: Tag/Nachtstunde; min. Abstand min_Sm; mittlere Höhe hm; Reflexionsanteil Refl; Immission, übrige Bezeichnungen nach [7]

3.2 Veredelung

Die Schallimmission wird nunmehr auf der Grundlage der derzeitigen Planung für die in Kapitel 2 ermittelten Schallquellen Veredelung nach TA Lärm prognostiziert. Abb. 12 zeigt den Beurteilungspegel der Schallimmission nachts in 5 m Höhe über Grund als Farbkarte. Ab mittelgrüner Färbung wird der Richtwert für Allgemeine Wohngebiete unterschritten.

In südwestlicher Richtung macht sich die Abschirmung durch die vorhandenen Werksgebäude bemerkbar, die Immissionsorte in Telz und Mittenwalde sind allein aufgrund der großen Entfernungen nicht betroffen.

In der folgenden Tabelle sind die Beurteilungspegel nach TA Lärm an ungünstig gelegenen Häusern für die Tages- und Nachtzeit wiedergegeben.

Aufp	Geb_Name	Aufp_Name	Χ	Υ	Z	Immi_T	Immi_N
I_01	AM KANAL 2	2.0G NW -	808,5230	5798,5066	45,0	35,6	35,3
I_02	AM KANAL 1A	1.0G NW -	808,5891	5798,5670	42,2	34,5	34,3
I_03	MITTENW. ALLEE 1C	1.0G SO -	807,0845	5798,3033	64,8	26,8	22,8
I_04	MITTENW. AUE 26	1.0G WSW-	809,5665	5799,5429	42,2	25,1	21,4

Abb. 11: Koordinaten und Beurteilungspegel Veredelung ausgewählter Aufpunkte

Tagsüber liegen die Beurteilungspegel aller Aufpunkte um mehr als 10 dB unter dem jeweiligen Richtwert - nach TA Lärm ist daher keiner ein Immissionsort. Nachts liegt überall Unterschreitung um mindestens 6 dB vor - die Schallimmission ist daher als "nicht relevant" anzusehen.

Einzelergebnisse und Parameter finden sich in Abb. 13 und Abb. 14. Tieffrequente Schallemissionen sind nicht vorhanden, Ton- und Impulshaltigkeit liegt aufgrund der großen Entfernungen nicht vor.

3.2.1 Qualität der Prognose

Die Prognose geht von durchweg überschätzendem Anlagendurchsatz aus. Für den gesamten Lagerbereich werden Absorption und Abschirmung durch das Lagergut selbst vernachlässigt.

Auch die Berechnungsvorschriften und Emissionsansätze der verwendeten Studien sind gezielt überschätzend gestaltet. So heißt es z.B. in [PRK]: "(..) als Beitrag zu einer Rechnung auf der sicheren Seite (..)". Zudem werden die Immissionsrichtwerte deutlich unterschritten. Prognoseunsicherheiten sind daher bereits zuungunsten des Betreibers hinreichend berücksichtigt.

3.2.2 <u>Inhaltsverzeichnis zu Angaben nach TA Lärm, Ziffern 2.6 / 3.5 des Anhangs</u>

- Bezeichnung der Anlage: Deckblatt/Kapitel 1
- Antragsteller/Auftraggeber: siehe Deckblatt/Kapitel 1
- Name der Institution und des verantwortlichen Bearbeiters: siehe Deckblatt und Stempel
- Aufgabenstellung: siehe Kapitel 1
- verwendetes Verfahren: siehe Kapitel 2
- Beschreibung des Betriebsablaufs: siehe Kapitel 1 und 2
- Lageplan: siehe Abb. 5
- Ort und Zeit der Messungen: siehe Abschnitt 2.1
- Liste der relevanten Schallquellen: siehe Kapitel 2, Abb. 6
- Angaben über geplante Schallschutzmaßnahmen: Emissionsbegrenzung Absauganlage, Schallkapseln, Fassadendämmung
- Angaben über die relevanten Hindernisse: Werksgebäude
- Angaben für jeden maßgeblichen Immissionsort: Abb. 11 / Abb. 13
- Qualität der Prognose: siehe Abschnitt 3.2.1

G22052-1 KANN Mittenwalde, 25.06.22

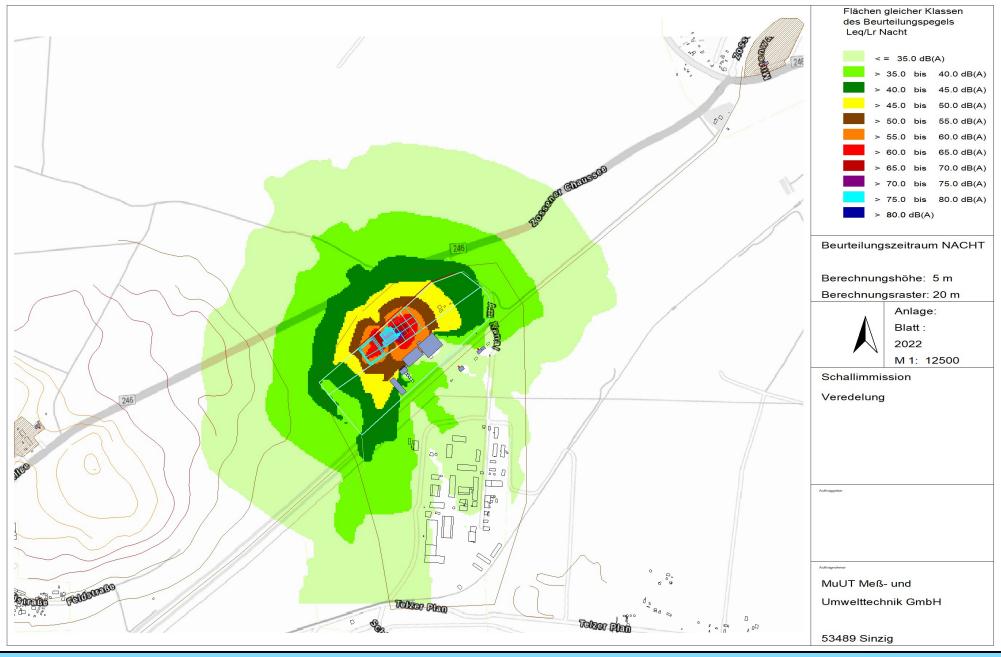


Abb. 12: Schallimmission Veredelung Nacht in 5 m Höhe über Grund

Nr	Aufp	Geb_Name	Aufp_Na	ame	Quelle	min_Sm	hm	H_diff	oO 1)I	Abar	Adiv	Aatm	Agr	cmet	Ruhe_T	Refl_T I	[mmi_T	Refl_N I	Immi_N
1	-	AM KANAL 2	2.0G	NW -	Abholen Strahl Out	268,2	4,4	7,7	0,0	0,0	-10,2	-59,8	-1,2	2,2	-1,4	0,0	0,0	15,6	0,0	15,6
1	I_01	AM KANAL 2	2.0G	NW -	Abstellen Spalter IN	258,8	4,4	7,7	0,0	0,0	-13,1	-60,0	-0,8	2,2	-1,3	0,0	12,3	15,7	12,3	15,7
1	I_01	AM KANAL 2	2.0G	NW -	Abstellen Strahl IN	239,0	4,4	7,6	0,0	0,0	-13,4	-59,0	-0,8	2,2	-1,3	0,0	10,5	15,4	10,5	15,4
1	I_01	AM KANAL 2	2.0G	NW -	Ausförd. Bruch 1	278,0	5,4	5,7	3,0	0,0	-24,9	-59,9	-1,4	2,6	-1,2	0,0	0,0	-10,8	0,0	-10,8
1	I_01	AM KANAL 2	2.0G	NW -	Ausförd. Bruch 2	282,3	5,4	5,7	3,0	0,0	-24,8	-60,0	-1,5	2,6	-1,2	0,0	0,0	-10,9	0,0	-10,9
1	I_01	AM KANAL 2	2.0G	NW -	Ausförd. Strahlanlag	269,2	4,9	6,6	3,0	0,0	-24,2	-59,6	-1,5	2,5	-1,3	0,0	0,0	-7,3	0,0	-7,3
1	I_01	AM KANAL 2	2.0G	NW -	Ausförd.Leer Spalt.1	255,4	5,0	6,5	3,0	0,0	-10,8	-59,1	-0,9	2,4	-1,2	0,0	0,0	7,2	0,0	7,2
1	I_01	AM KANAL 2	2.0G	NW -	Ausförd.Leer Spalt.2	268,6	5,0	6,4	3,0	0,0	-9,5	-59,6	-1,0	2,4	-1,3	0,0	0,0	7,8	0,0	7,8
1	I_01	AM KANAL 2	2.0G	NW -	Bruchbox	282,8	4,6	7,1	0,0	0,0	-24,8	-60,0	-3,6	2,5	-1,3	0,0	0,0	-19.8	0,0	-19,8
1	I_01	AM KANAL 2	2.0G	NW -	Einförd. Pal.Strahl	272,6	4,9	6,6	3,0	0,0	-24,8	-59,7	-1,7	2,5	-1,3	0,0	0,0	-8,9	0,0	-8,9
1	I_01	AM KANAL 2	2.0G	NW -	Einförd. Spalter 1	257,6	5,0	6,5	3,0	0,0	-10,6	-59,2	-0,9	2,4	-1,2	0,0	0,0	12,3	0,0	12,3
1	I_01	AM KANAL 2	2.0G	NW -	Einförd. Spalter 2	266,4	5,0	6,4	3,0	0,0	-9,7	-59,5	-1,0	2,4	-1,3	0,0	0,0	12,7	0,0	12,7
1	I_01	AM KANAL 2	2.0G	NW -	Einförder Strahlen	239,4	4,9	6,5	3,0	0,0	-11,8	-58,6	-0,8	2,4	-1,2	0,0	0,0	13,7	0,0	13,7
1	I 01	AM KANAL 2	2.0G	NW -	Entleeren Bruchbox	284,3	4,6	7,1	0,0	0,0	-23,1	-60,3	-0,8	2,4	-1,4	0,0	0,0	6,0	0,0	0,0
1	_	AM KANAL 2	2.0G	NW -	Entstaub KollerSpalt	292,8	6,1	4,2	0,0	0,0	-23,8	-60,3	-1,5	2,6	-1,2	0,0	0,0	12,8	0,0	12,8
1	I 01	AM KANAL 2	2.0G	NW -	Entstaubung Tosca	233,6	6,1	4,1	0,0	0,0	-9,6	-58,4	-0,9	2,6	-1,0	0,0	0,0	33,7	0,0	33,7
1		AM KANAL 2	2.0G	NW -	Fensterband SO	246,9	5,2	6,1	3,0	0,0	-7,3	-58,9	-0,3	2,4	-1,2	0,0	0,0	5,7	0,0	5,7
1	_	AM KANAL 2	2.0G	NW -	Hallendach	249,3	4,8	-1,3	0,0	0,0	-4,8	-59,5	-0,3	2,4	-1,3	0,0	0,0	14.3	0,0	14,3
1		AM KANAL 2	2.0G	NW -	Hallenwand	234,0	6,3	3,6	3,0	0,0	-7,9	-59,6	-0,2	2,7	-1,0	0,0	0,0	14,8	0,0	14,8
1	_	AM KANAL 2	2.0G	NW -	Kompressorraum	294,2	4,9	6,7	3,0	0,0	-24,9	-60,4	-3,0	2,7	-1,3	0,0	0,0	2,1	0,0	2,1
1		AM KANAL 2	2.0G	NW -	Lager NO Anheben	197,5	4,4	7,5	0,0	0,0	-13,0	-58,7	-0,8	2,2	-1,3	0,0	-10,6	17,4	-10,6	17,4
1	_	AM KANAL 2	2.0G	NW -	Lager SW Abstellen	268,7	4,4	7,7	0,0	0,0	-6,0	-60,8	-1,6	2,6	-1,4	0,0	0,0	18,8	0,0	18,8
1	_	AM KANAL 2	2.0G	NW -	Lichtband Nord	269,4	4,8	-1,3	0,0	0,0	-4,8	-59,6	-0,6	2,0	-1,4	0,0	0,0	9,2	0,0	9,2
1	_	AM KANAL 2	2.0G	NW -	Lichtband Nord offen	265,2	4,8	-1,3	0,0	0,0	-4,8	-59,5	-2,0	2,2	-1,4	0,0	0,0	12,8	0,0	12,8
1	_	AM KANAL 2	2.0G	NW -	Lichtband Sued	251,1	4,8	-1,3	0,0	0,0	-4,8	-59,1	-0,6	2,0	-1,3	0,0	0,0	10,2	0,0	10,2
1	_	AM KANAL 2	2.0G	NW -	Lichtband Sued offen	245,5	4,8	-1,3	0,0	0,0	-4,8	-58,9	-4,0	2,2	-1,3	0,0	0,0	12,8	0,0	12,8
1		AM KANAL 2	2.0G	NW -	Lkw Lager Ausliefern	288,7	4,4	7,5	0,0	0,0	-6,0	-60,7	-1,5	2,6	-1,4	0,0	0,0	20,2	0,0	0,0
1		AM KANAL 2	2.0G	NW -	Stapler Ausliefern	271,1	4,4	7,7	0,0	0,0	-6,0	-60,8	-1,6	2,6	-1,4	0,0	0,0	20,6	0,0	0,0
1	_	AM KANAL 2	2.0G	NW -	Stapler Spalter IN	243,0	4,4	7,7	0,0	0,0	-14,3	-59,4	-0,8	2,2	-1,3	0,0	13,5	20,2	13,5	20,2
1	_	AM KANAL 2	2.0G	NW -	Stapler Strahler IN	220,6	4,4	7,6	0,0	0,0	-18,3	-58,6	-0,7	2,2	-1,2	0,0	-16,3	16,1	-16,3	16,1
1		AM KANAL 2	2.0G	NW -	Stapler Strahler Out	293,1	4,4	7,6	0,0	0,0	-6,3	-60,6	-1,5	2,5	-1,4	0,0	0,0	25,5	0,0	25,5
1		AM KANAL 2	2.0G	NW -	Tor Koller Rütteln	279,5	5,1	6,2	3,0	0,0	-23,9	-59,9	-0,6	2,4	-1,3	0,0	0,0	-13,3	0,0	-13,3
1	_	AM KANAL 2	2.0G	NW -	Tor Kollertrommel	284,5	5,1	6,2	3,0	0,0	-23,9	-60,1	-0,6	2,4	-1,3	0,0	0,0	-13,5	0,0	-13,5
1	_	AM KANAL 2	2.0G	NW -	Tor NO Tosca	246,2	5,1	6,1	3,0	0,0	-10,9	-58,8	-0,8	2,5	-1,2	0,0	0,0	4,6	0,0	4,6
1		AM KANAL 2	2.0G	NW -	Tor NO Tosca offen	246,2	5,1	6,1	3,0	0,0	-11,2	-58,8	-0,9	2,5	-1,2	0,0	0,0	19,4	0,0	19,4
1	_	AM KANAL 2	2.0G	NW -	Tor Nord	276,0	5,1	6,2	3,0	0,0	-24,8	-59,8	-0,9 -1,6	2,6	-1,2	0,0	0,0	-18,3	0,0	-18,3
1		AM KANAL 2	2.0G	NW -	Tor NW	286,7	5,1	6,2	3,0	0,0	-24,9	-60,1	-1,6	2,6	-1,3	0,0	0,0	-11,5	0,0	-11,5
1	_	AM KANAL 2	2.0G	NW -	Tor SO Umreifung	254,6	5,1	6,2	3,0	0,0	-9,9	-59,1	-0,9	2,5	-1,2	0,0	0,0	0,9	0,0	0,9
1		AM KANAL 2	2.0G	NW -	Tor SW Freiraum	274,5	5,1	6,2	3,0	0,0	-24,3	-59,8	-0,5 -1,5	2,6	-1,2	0,0	0,0	-19,7	0,0	-19,7
1	_	AM KANAL 2	2.0G	NW -	Tür N Spalter		4,6	7,2	3,0	0,0	-10,7	-59,7	-1,3	2,3	-1,3	0,0	0,0	-23,1	0,0	-23,1
1		AM KANAL 2	2.0G	NW -	Tür NO Tosca	272,4 243,6	4,6	7,2	3,0	0,0	-10,7	-58,7	-0,7	2,6	-1,3	0,0	0,0	-16,3	0,0	-16,3
1		AM KANAL 2	2.0G	NW -	Tür NW	285,2	4,6	7,1	3,0	0,0	-24,8	-60,1	-0,7 -1,7	2,6	-1,2	0,0	0,0	-37,7	0,0	-37,7
1	_	AM KANAL 2	2.0G	NW -	Tür NW	287,2	4,6	7,2	3,0	0,0	-24,6	-60,2	-1,7 -1,6	2,6		0,0	0,0	-31,5	0,0	-37,7 -31,5
1		AM KANAL 2	2.0G 2.0G	NW -	Tür SO Tosca	240,6	4,6	7,2		0,0	-11,8	-58,6	-0,7		-1,4 -1,2	0,0	0,0	-31,3 -16,1	0,0	-
1	_					-		7,1	3,0 3,0	0,0		-59,2		2,6 2,5	-1,2	0,0				-16,1
1	_	AM KANAL 2 AM KANAL 2	2.0G 2.0G	NW - NW -	Tür SO Umreifung Anzahl/Summe	256,0	4,6	7,2	3,0	0,0	-10,8	-39,2	-0,8	2,3	-1,3	0,0	0,0 17,1	-19,1 35,6	0,0 17,1	-19,1 35,3
1	1_01	AM KANAL Z	2.0G	NW -	Alizali i / Suillille												17,1	33,0	17,1	33,3
	Aufn	Cab Nama	Aufo Na		Quelle	min Sm	hm	н_diff ।	-n r	NT.	Aban	adi.	Antm	A a n	cmat	Bubo T I	nof1 T 1		nofl N 1	Tmmi N
Nr		Geb_Name	Aufp_Na		·									Agr				[mmi_T		
2	I_02	AM KANAL 1A	1.0G	NW -	Abholen Strahl Out	324,4	3,0	4,9	0,0	0,0	-13,9	-61,7	-1,1	3,3	-1,6	0,0	0,0	10,9	0,0	10,9
2		AM KANAL 1A	1.0G	NW -	Abstellen Spalter IN	298,5	3,0	4,9	0,0	0,0	-14,7	-61,1	-0,9	3,2	-1,6	0,0	10,5	13,7	10,5	13,7
2	_	AM KANAL 1A	1.0G	NW -	Abstellen Strahl IN	281,6	3,0	4,8	0,0	0,0	-15,8	-60,6	-0,8	3,2	-1,6	0,0	10,7	13,6	10,7	13,6
2		AM KANAL 1A	1.0G	NW -	Ausförd. Bruch 1	318,3	4,0	2,9	3,0	0,0	-24,8	-61,1	-1,6	3,3	-1,5	0,0	0,0	-11,7	0,0	-11,7
2	_	AM KANAL 1A	1.0G	NW -	Ausförd. Bruch 2	324,7	4,0	2,9	3,0	0,0	-24,9	-61,2	-1,6	3,3	-1,5	0,0	0,0	-11,9	0,0	-11,9
2		AM KANAL 1A	1.0G	NW -	Ausförd. Strahlanlag	324,4	3,5	3,8	3,0	0,0	-24,7	-61,2	-1,9	3,4	-1,6	0,0	0,0	-9,3	0,0	-9,3
2	_	AM KANAL 1A	1.0G	NW -	Ausförd.Leer Spalt.1	296,6	3,6	3,7	3,0	0,0	-10,9	-60,4	-1,0	3,1	-1,5	0,0	0,0	6,1	0,0	6,1
2	_	AM KANAL 1A	1.0G	NW -	Ausförd.Leer Spalt.2	307,6	3,6	3,6	3,0	0,0	-12,9	-60,8	-1,0	3,2	-1,5	0,0	-22,1	3,8	-22,1	3,8
2	1_02	AM KANAL 1A	1.0G	NW -	Bruchbox	323,9	3,2	4,3	0,0	0,0	-24,8	-61,2	-3,8	3,5	-1,6	0,0	0,0	-20,5	0,0	-20,5

2	I_02	AM KANAL 1A	1.0G	NW -	Einförd. Pal.Strahl	324,4	3,5	3,8	3,0	0,0	-24,7	-61,2	-1,9	3,4	-1,6	0,0	0,0	-10,0	0,0	-10,0
2	I_02	AM KANAL 1A	1.0G	NW -	Einförd. Spalter 1	298,5	3,6	3,7	3,0	0,0	-10,8	-60,5	-1,0	3,2	-1,5	0,0	-19,4	11,2	-19,4	11,2
2	I_02	AM KANAL 1A	1.0G	NW -	Einförd. Spalter 2	305,7	3,6	3,6	3,0	0,0	-13,0	-60,7	-1,0	3,2	-1,5	0,0	-17,3	8,8	-17,3	8,8
2	I_02	AM KANAL 1A	1.0G	NW -	Einförder Strahlen	283,7	3,5	3,7	3,0	0,0	-12,4	-60,1	-1,0	3,0	-1,5	0,0	0,0	11,8	0,0	11,8
2	I_02	AM KANAL 1A	1.0G	NW -	Entleeren Bruchbox	324,3	3,2	4,3	0,0	0,0	-22,7	-61,5	-0,9	3,3	-1,6	0,0	0,0	5,8	0,0	0,0
2	I_02	AM KANAL 1A	1.0G	NW -	Entstaub KollerSpalt	341,1	4,7	1,4	0,0	0,0	-24,2	-61,7	-1,7	3,1	-1,4	0,0	0,0	11,1	0,0	11,1
2	I_02		1.0G	NW -	Entstaubung Tosca	277,4	4,7	1,3	0,0	0,0	-10,1	-59,9	-1,0	2,6	-1,3	0,0	23,8	32,0	23,8	32,0
	_				~	-			-			-	-							
2	I_02	AM KANAL 1A	1.0G	NW -	Fensterband SO	298,4	3,8	3,3	3,0	0,0	-8,4	-60,5	-0,3	3,0	-1,5	0,0	0,0	3,3	0,0	3,3
2	1_02		1.0G	NW -	Hallendach	298,4	3,4	-4,1	0,0	0,0	-4,8	-60,9	-0,4	3,5	-1,6	0,0	0,0	13,6	0,0	13,6
2	1_02	AM KANAL 1A	1.0G	NW -	Hallenwand	294,8	4,9	0,8	3,0	0,0	-8,6	-61,1	-0,2	2,7	-1,3	0,0	0,0	12,3	0,0	12,3
2	1_02	AM KANAL 1A	1.0G	NW -	Kompressorraum	341,3	3,5	3,9	3,0	0,0	-24,9	-61,7	-3,4	3,7	-1,6	0,0	0,0	1,1	0,0	1,1
2	I_02	AM KANAL 1A	1.0G	NW -	Lager NO Anheben	217,6	3,0	4,7	0,0	0,0	-3,0	-59,3	-1,6	3,1	-1,6	0,0	0,7	26,7	0,7	26,7
2	I_02	AM KANAL 1A	1.0G	NW -	Lager SW Abstellen	344,8	3,0	4,9	0,0	0,0	-9,7	-62,7	-1,4	3,5	-1,7	0,0	-10,5	14,0	-10,5	14,0
2	I_02	AM KANAL 1A	1.0G	NW -	Lichtband Nord	312,0	3,3	-4,1	0,0	0,0	-4,8	-60,9	-0,7	3,0	-1,6	0,0	0,0	8,6	0,0	8,6
2	I_02	AM KANAL 1A	1.0G	NW -	Lichtband Nord offen	306,6	3,4	-4,1	0,0	0,0	-4,8	-60,9	-2,1	3,2	-1,6	0,0	0,0	12,1	0,0	12,1
2	I_02	AM KANAL 1A	1.0G	NW -	Lichtband Sued	297,8	3,4	-4,1	0,0	0,0	-4,8	-60,6	-0,7	3,1	-1,6	0,0	0,0	9,4	0,0	9,4
2	I_02		1.0G	NW -	Lichtband Sued offen	290,6	3,4	-4,1	0,0	0,0	-4,8	-60,4	-4,3	3,3	-1,6	0,0	0,0	11,8	0,0	11,8
2	I_02		1.0G	NW -	Lkw Lager Ausliefern	349,6	3,0	4,9	0,0	0,0	-10,1	-62,5	-1,5	3,6	-1,7	0,0	0,0	15,0	0,0	0,0
2	I_02	AM KANAL 1A	1.0G	NW -	Stapler Ausliefern	347,6	3,0	4,9	0,0	0,0	-9,7	-62,7	-1,4	3,5	-1,7	0,0	0,0	15,8	0,0	0,0
	_				=	-						-	-							
2	I_02	AM KANAL 1A	1.0G	NW -	Stapler Spalter IN	271,3	3,0	4,9	0,0	0,0	-10,3	-60,2	-1,0	3,1	-1,6	0,0	9,2	22,9	9,2	22,9
2	1_02		1.0G	NW -	Stapler Strahler IN	251,8	3,0	4,8	0,0	0,0	-18,2	-59,7	-0,7	3,0	-1,5	0,0	7,9	16,2	7,9	16,2
2	1_02		1.0G	NW -	Stapler Strahler Out	357,5	3,0	4,8	0,0	0,0	-9,7	-62,1	-1,4	3,4	-1,7	0,0	0,0	21,3	0,0	21,3
2	1_02	AM KANAL 1A	1.0G	NW -	Tor Koller Rütteln	330,0	3,7	3,4	3,0	0,0	-23,9	-61,4	-0,7	3,2	-1,6	0,0	0,0	-14,4	0,0	-14,4
2	I_02	AM KANAL 1A	1.0G	NW -	Tor Kollertrommel	334,0	3,7	3,4	3,0	0,0	-23,9	-61,5	-0,7	3,2	-1,6	0,0	0,0	-14,5	0,0	-14,5
2	I_02	AM KANAL 1A	1.0G	NW -	Tor NO Tosca	289,2	3,7	3,3	3,0	0,0	-11,1	-60,2	-0,9	3,1	-1,5	0,0	0,0	3,2	0,0	3,2
2	I_02	AM KANAL 1A	1.0G	NW -	Tor NO Tosca offen	289,2	3,7	3,3	3,0	0,0	-11,4	-60,2	-1,0	3,1	-1,5	0,0	0,0	18,0	0,0	18,0
2	I_02	AM KANAL 1A	1.0G	NW -	Tor Nord	315,3	3,7	3,4	3,0	0,0	-24,8	-61,0	-1,7	3,3	-1,5	0,0	0,0	-19,1	0,0	-19,1
2	I_02	AM KANAL 1A	1.0G	NW -	Tor NW	330,9	3,7	3,4	3,0	0,0	-24,7	-61,4	-1,8	3,4	-1,6	0,0	0,0	-12,3	0,0	-12,3
2	I_02	AM KANAL 1A	1.0G	NW -	Tor SO Umreifung	308,6	3,7	3,4	3,0	0,0	-11,1	-60,8	-1,0	3,3	-1,5	0,0	0,0	-1,6	0,0	-1,6
2	I_02	AM KANAL 1A	1.0G	NW -	Tor SW Freiraum	328,7	3,7	3,4	3,0	0,0	-24,4	-61,3	-1,8	3,5	-1,5	0,0	0,0	-20,9	0,0	-20,9
2	I_02		1.0G	NW -	Tür N Spalter	310,8	3,2	4,4	3,0	0,0	-14,4	-60,8	-1,3	3,3	-1,6	0,0	-53,7	-27,1	-53,7	-27,1
2	I_02	AM KANAL 1A	1.0G	NW -	Tür NO Tosca	287,0	3,2	4,3	3,0	0,0	-13,8	-60,2	-0,7	3,5	-1,6	0,0	0,0	-19,1	0,0	-19,1
2	I_02		1.0G	NW -	Tür NW	328,8	3,2	4,4		0,0	-24,8	-61,3	-2,0	3,6	-1,6	0,0	0,0	-38,4	0,0	-38,4
	_					-			3,0			-								
2	I_02	AM KANAL 1A	1.0G	NW -	Tür NW	336,2	3,2	4,4	3,0	0,0	-24,7	-61,5	-1,8	3,6	-1,6	0,0	0,0	-32,3	0,0	-32,3
2	1_02		1.0G	NW -	Tür SO Tosca	289,7	3,2	4,3	3,0	0,0	-12,7	-60,2	-0,7	3,5	-1,6	0,0	0,0	-18,1	0,0	-18,1
2	1_02	AM KANAL 1A	1.0G	NW -	Tür SO Umreifung	310,4	3,2	4,4	3,0	0,0	-11,6	-60,8	-0,9	3,6	-1,6	0,0	0,0	-20,8	0,0	-20,8
2	1_02	AM KANAL 1A	1.0G	NW -	Anzahl/Summe												24,4	34,5	24,4	34,3
2																				
Nr	Aufp	Geb_Name	Aufp_Na	ame	Quelle	min_Sm	nm H	diff c	0 D	I A	Abar A	Adiv A	atm Aç	gr d	met R	tuhe_T	Refl_T 1	Cmmi_T	refl_N 1	[mmi_N
3	I_03	MITTENW. ALLEE 1C	1.0G	SO -	Abholen Strahl Out	1209,8	6,7	27,5	0,0	0,0	0,0	-72,3	-5,2	1,2	-1,9	3,6	10,3	13,9	6,7	10,3
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	Abstellen Spalter IN	1257,0	7,0	27,5	0,0	0,0	-17,4	-74,3	-3,7	1,4	-1,9	3,6	-13,8	-5,6	-17,4	-9,2
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	Abstellen Strahl IN	1265,9	7,2	27,4	0,0	0,0	-16,8	-74,7	-3,4	1,5	-1,9	3,6	0,0	-5,6	0,0	-9,2
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	Ausförd. Bruch 1	1241,7	8,0	25,5	3,0	0,0	-4,2	-72,9	-4,5	0,3	-1,9	3,6	-6,3	-2,9	-9,9	-6,5
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	Ausförd. Bruch 2	1232,7	7,9	25,5	3,0	0,0	-4,3	-72,8	-4,5	0,3	-1,9	3,6	-16,1	-5,2	-19,7	-8,8
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	Ausförd. Strahlanlag	1213,7	7,3	26,4	3,0	0,0	0,0	-72,7	-4,7	1,5	-1,9	3,6	0,0	2,6	0,0	-1,0
3	_					-						-								
	I_03	MITTENW. ALLEE 1C	1.0G	so -	Ausförd.Leer Spalt.1	1257,8	7,7	26,3	3,0	0,0	-19,5	-73,0	-4,5	1,3	-1,9	3,6	0,0	-17,2	0,0	-20,8
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	· · · · · · · · · · · · · · · · · · ·	1252,8	7,7	26,2	3,0	0,0	-19,6	-73,0	-4,6	1,3	-1,9	3,6	-15,7	-13,4	-19,3	-17,0
3	1_03	MITTENW. ALLEE 1C	1.0G	so -	Bruchbox	1235,8	7,2	26,9	0,0	0,0	-4,6	-72,8	-7,9	1,2	-1,9	3,6	-15,9	-12,4	-19,5	-16,0
3	1_03	MITTENW. ALLEE 1C	1.0G	so -	Einförd. Pal.Strahl	1218,0	7,4	26,4	3,0	0,0	0,0	-72,7	-4,6	1,4	-1,9	3,6	0,6	4,3	-3,0	0,7
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	Einförd. Spalter 1	1257,0	7,7	26,3	3,0	0,0	-19,5	-73,0	-4,5	1,3	-1,9	3,6	0,0	-12,2	0,0	-15,8
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	Einförd. Spalter 2	1253,7	7,7	26,2	3,0	0,0	-19,6	-73,0	-4,6	1,3	-1,9	3,6	-11,9	-9,1	-15,5	-12,7
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	Einförder Strahlen	1264,2	7,7	26,3	3,0	0,0	-19,4	-73,0	-4,5	1,5	-1,9	3,6	0,0	-9,9	0,0	-13,5
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	Entleeren Bruchbox	1232,5	7,2	27,0	0,0	0,0	-4,1	-72,3	-3,7	-0,4	-1,9	0,0	-8,8	6,9	0,0	0,0
3	1_03	MITTENW. ALLEE 1C	1.0G	so -	Entstaub KollerSpalt		8,5	24,0	0,0	0,0	-0,5	-72,6	-4,9	0,6	-1,8	3,6	20,4	23,9	16,8	20,3
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	Entstaubung Tosca	1270,2	8,9	23,9	0,0	0,0	-14,7	-73,1	-3,2	1,5	-1,9	3,6	0,0	13,2	0,0	9,6
3	I_03	MITTENW. ALLEE 1C	1.0G	so -	Fensterband SO	1242,0	7,7	25,9	3,0	0,0	-17,2	-72,9	-0,9	2,6	-1,9	3,6	0,0	-15,7	0,0	-19,3
3	I_03	MITTENW. ALLEE IC	1.0G	so -	Hallendach	1219,4	10,6	18,5	0,0	0,0	-17,2 -4,3	-72,5 -72,5	-0,3 -1,2	2,3	-1,9	3,6	0,0	3,8	0,0	0,2
3	I_03	MITTENW. ALLEE IC		so -	Hallenwand							-72,3 -72,1	-1,2 -1,1			3,6				
э	1_03	MILIENW. ALLEE IC	1.0G	30 -	na i leliwaliu	1213,2	8,8	23,5	3,0	0,0	-4,5	-/2,1	-1,1	1,5	-1,8	٥,٥	-3,5	6,7	-7,1	3,1

3	I_03	MITTENW. AL	LEE 1C	1.0G	so -	Kompressorraum	1210,5	7,3	26,5	3,0	0,0	-4,4	-72,7	-10,1	0,7	-1,9	3,6	0,0	4,2	0,0	0,6
3	I_03	MITTENW. AL	LEE 1C	1.0G	so -	Lager NO Anheben	1279,6	7,2	27,4	0,0	0,0	-5,3	-73,3	-5,1	1,1	-1,9	3,6	-34,4	8,1	-38,0	4,5
3	I_03	MITTENW. AL	LEE 1C	1.0G	so -	Lager SW Abstellen	1143,9	6,3	27,4	0,0	0,0	-0,5	-72,0	-5,1	1,2	-1,9	3,6	0,2	11,6	-3,4	8,0
3	I_03	MITTENW. AL	LEE 1C	1.0G	so -	Lichtband Nord	1229,0	11,1	18,5	0,0	0,0	-4,0	-72,3	-2,6	0,6	-1,9	3,6	0,0	-3,1	0,0	-6,7
3	I_03	MITTENW. ALI	LEE 1C	1.0G	so -	Lichtband Nord offen	1222,5	11,1	18,5	0,0	0,0	-3,3	-71,1	-6,7	1,0	-1,9	3,6	0,0	-0,1	0,0	-3,7
3	1_03	MITTENW. ALI		1.0G	so -	Lichtband Sued	1230,5	10,7	18,5	0,0	0,0	-4,0	-72,3	-2,5	1,0	-1,9	3,6	0,0	-2,1	0,0	-5,7
3	1_03	MITTENW. ALI		1.0G	so -	Lichtband Sued offen	1221,9	10,6	18,5	0,0	0,1	-3,1	-70,6	-9,7	1,2	-1,9	3,6	0,0	-0,8	0,0	-4,4
3	I_03	MITTENW. ALI		1.0G	so -	Lkw Lager Ausliefern	1147,9	6,3	27,3	0,0	0,0	0,0	-72,1	-5,1	1,3	-1,9	1,9	2,0	11,8	0,0	0,0
3	I_03	MITTENW. ALI		1.0G	so -	Stapler Ausliefern	1146,3	6,3	27,4	0,0	0,0	0,0	-72,1	-5,1	1,2	-1,9	1,9	0,3	12,1	0,0	0,0
3	I_03			1.0G	so -	Stapler Spalter IN	1295,1	7,3	27,5	0,0	0,0	-7,3	-73,3	-4,3	1,0	-1,9	3,6	-1,4	10,8	-5,0	7,2
3	I_03	MITTENW. ALI		1.0G	so -	Stapler Strahler IN	1302,6	7,3	27,4	0,0	0,0	-13,6	-73,3	-3,1	1,3	-1,9	3,6	-3,7	6,2	-7,3	2,6
3	I_03	MITTENW. ALI		1.0G	so -	Stapler Strahler Out Tor Koller Rütteln	1175,7	6,5	27,4	0,0	0,0	0,0	-72,4	-4,8	1,2	-1,9	3,6	13,5	19,7	9,9	16,1
3 3	I_03	MITTENW. ALI		1.0G	so -		1215,0	7,5	26,0	3,0	0,0	-2,9	-72,7	-2,9	0,5	-1,9	3,6	0,0	-6,3	0,0	-9,9
3	I_03 I_03			1.0G 1.0G	so -	Tor Kollertrommel	1212,9	7,5	26,0 25,9	3,0	0,0 0,0	-3,5	-72,7	-2,6 -3,4	0,2 2,5	-1,9 1.0	3,6 3,6	0,0	-6,9	0,0	-10,5 -20,9
3	I_03	MITTENW. ALI		1.0G	so - so -	Tor NO Tosca Tor NO Tosca offen	1261,4 1261,4	7,9 7,9	25,9	3,0	0,0	-18,9 -19,3	-73,0 -73,0	-3,4 -4,4	1,5	-1,9 -1,9	3,6	0,0 0,0	-17,3 -4,5	0,0 0,0	-20,9 -8,1
3	I_03	MITTENW. ALI		1.0G	so -	Tor Nord	1246,1	7,3	26,0	3,0 3,0	0,0	-19,5 -5,6	-73,0 -72,9	-4,5	0,2	-1,9 -1,9	3,6	-25,6	-14,2	-29,2	-0,1 -17,8
3	I_03			1.0G	so -	Tor NW	1224,2	7,6	26,0	3,0	0,0	-3,6	-72,8	-4,3 -5,0	0,2	-1,9 -1,9	3,6	-10,7	-4,6	-14,3	-17,3 -8,2
3	I_03	MITTENW. ALI		1.0G	so -	Tor SO Umreifung	1229,8	7,6	26,0	3,0	0,0	-18,9	-72,8	-3,4	2,6	-1,9	3,6	0,0	-21,3	0,0	-24,9
3	I_03	MITTENW. ALI		1.0G	so -	Tor SW Freiraum	1211,2	7,5	26,0	3,0	0,0	0,0	-72,7	-4,6	1,8	-1,9	3,6	-39,4	-9,2	-43,0	-12,8
3	I_03	MITTENW. ALI		1.0G	so -	Tür N Spalter	1251,5	7,3	27,0	3,0	0,0	-19,5	-73,0	-5,2	1,9	-1,9	3,6	-43,8	-41,9	-47,4	-45,5
3	I_03			1.0G	so -	Tür NO Tosca	1262,5	7,4	26,9	3,0	0,0	-19,0	-73,0	-2,7	3,8	-1,9	3,6	0,0	-35,5	0,0	-39,1
3	I_03	MITTENW. ALI		1.0G	so -	Tür NW	1227,2	7,1	27,0	3,0	0,0	-4,6	-72,8	-5,7	1,4	-1,9	3,6	-34,5	-30,3	-38,1	-33,9
3	I_03	MITTENW. ALI		1.0G	so -	Tür NW	1211,8	7,0	27,0	3,0	0,0	-4,5	-72,7	-5,2	1,1	-1,9	3,6	0,0	-25,9	0,0	-29,5
3	I_03	MITTENW. ALI		1.0G	so -	Tür SO Tosca	1252,7	7,3	27,0	3,0	0,0	-18,9	-73,0	-2,7	3,8	-1,9	3,6	0,0	-35,5	0,0	-39,1
3	I_03	MITTENW. ALI		1.0G	so -	Tür SO Umreifung	1227,6	7,1	27,0	3,0	0,0	-18,8	-72,8	-2,7	3,7	-1,9	3,6	0,0	-38,4	0,0	-42,0
3	I_03	MITTENW. ALI		1.0G	so -	Anzahl/Summe	, -	,	,			.,.	, -	,	- ,	, -		21,7	26,8	18,1	22,8
3						. ,												•		- ,	•
Nr	Aufp	Geb_Name		Aufp_Nai		0															
				Au i p_Nai	me	Quelle	min_Sm h	nm H	_diff D	0 [)I A	Nbar A	Adiv A	Natm Ag	jr (met R	uhe_T i	refl_T 1	.mmi_T	Refl_N 1	mmı_N
4	I_04	MITTENW. AU		1.0G	me WSW-	Abholen Strahl Out	mın_Sm r 1619,4	nm i 3,0	1_d1ff D 4,9	0,0	01 A -0,1	Nbar # -20,9	Adiv A -77,6	Natm Ag -3,6	jr (3,0	met R -1,9	uhe_T 1 3,6	Refl_T 1 0,0	mmi_T -11,5	Refi_N 1 0,0	mm1_N -15,1
4 4	I_04 I_04		E 26	. –		· ·	_		_					-				_	_		
	_	MITTENW. AU	E 26 E 26	1.0G	WSW-	Abholen Strahl Out	1619,4	3,0	4,9	0,0	-0,1	-20,9	-77,6	-3,6	3,0	-1,9	3,6	0,0	-11,5	0,0	-15,1
4	I_04	MITTENW. AU	E 26 E 26 E 26	1.0G 1.0G	WSW-	Abholen Strahl Out Abstellen Spalter IN	1619,4 1557,9	3,0 3,0	4,9 4,9	0,0 0,0	-0,1 0,0	-20,9 -5,8	-77,6 -75,3	-3,6 -5,3	3,0 2,2	-1,9 -1,9	3,6 3,6	0,0 4,5	-11,5 7,0	0,0 0,9	-15,1 3,4
4 4	I_04 I_04	MITTENW. AUI MITTENW. AUI MITTENW. AUI	E 26 E 26 E 26 E 26	1.0G 1.0G 1.0G	WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN	1619,4 1557,9 1556,6	3,0 3,0 3,0	4,9 4,9 4,8	0,0 0,0 0,0	-0,1 0,0 0,0	-20,9 -5,8 -6,4	-77,6 -75,3 -75,7	-3,6 -5,3 -4,9	3,0 2,2 2,2	-1,9 -1,9 -1,9	3,6 3,6 3,6	0,0 4,5 4,5	-11,5 7,0 6,8	0,0 0,9 0,9	-15,1 3,4 3,2
4 4 4	I_04 I_04 I_04	MITTENW. AUI MITTENW. AUI MITTENW. AUI	E 26 E 26 E 26 E 26 E 26	1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1	1619,4 1557,9 1556,6 1572,2	3,0 3,0 3,0 4,0	4,9 4,9 4,8 2,9	0,0 0,0 0,0 3,0	-0,1 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7	-77,6 -75,3 -75,7 -74,9	-3,6 -5,3 -4,9 -5,4	3,0 2,2 2,2 2,6	-1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4	-11,5 7,0 6,8 -6,5	0,0 0,9 0,9 -23,0	-15,1 3,4 3,2 -10,1
4 4 4 4	I_04 I_04 I_04 I_04	MITTENW. AUI MITTENW. AUI MITTENW. AUI MITTENW. AUI	E 26 E 26 E 26 E 26 E 26 E 26	1.0G 1.0G 1.0G 1.0G 1.0G	wsw- wsw- wsw- wsw- wsw-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2	1619,4 1557,9 1556,6 1572,2 1581,7	3,0 3,0 3,0 4,0 4,0	4,9 4,9 4,8 2,9 2,9	0,0 0,0 0,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7	-77,6 -75,3 -75,7 -74,9 -75,0	-3,6 -5,3 -4,9 -5,4 -5,5	3,0 2,2 2,2 2,6 2,6	-1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3	-11,5 7,0 6,8 -6,5 -4,9	0,0 0,9 0,9 -23,0 -12,9	-15,1 3,4 3,2 -10,1 -8,5
4 4 4 4	I_04 I_04 I_04 I_04 I_04	MITTENW. AUI MITTENW. AUI MITTENW. AUI MITTENW. AUI	E 26 E 26 E 26 E 26 E 26 E 26 E 26	1.0G 1.0G 1.0G 1.0G 1.0G	wsw- wsw- wsw- wsw- wsw-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9	3,0 3,0 3,0 4,0 4,0 3,5	4,9 4,9 4,8 2,9 2,9 3,8	0,0 0,0 0,0 3,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2	-3,6 -5,3 -4,9 -5,4 -5,5	3,0 2,2 2,2 2,6 2,6 2,7	-1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0	-11,5 7,0 6,8 -6,5 -4,9	0,0 0,9 0,9 -23,0 -12,9 0,0	-15,1 3,4 3,2 -10,1 -8,5 -26,7
4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI MITTENW. AUI MITTENW. AUI MITTENW. AUI MITTENW. AUI MITTENW. AUI	E 26 E 26 E 26 E 26 E 26 E 26 E 26 E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	wsw- wsw- wsw- wsw- wsw- wsw-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5	3,0 3,0 3,0 4,0 4,0 3,5 3,6	4,9 4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3	0,0 0,0 0,0 3,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9	-3,6 -5,3 -4,9 -5,4 -5,5 -5,0	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,3	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -4,0 -16,2	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -7,6 -19,8
4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26 E 26 E 26 E 26 E 26 E 26 E 26 E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,2 3,5	4,9 4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,8	0,0 0,0 0,0 3,0 3,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,7 -75,0 -75,1	-3,6 -5,3 -4,9 -5,4 -5,5 -5,0 -5,5 -5,6 -8,4 -4,9	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,3 2,7	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -4,0 -16,2 -23,7	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -25,4 -24,5 0,0	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -7,6 -19,8 -27,3
4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26 E 26 E 26 E 26 E 26 E 26 E 26 E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	wsw- wsw- wsw- wsw- wsw- wsw- wsw- wsw-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7 1562,5	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,2 3,5	4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,8 3,7	0,0 0,0 0,0 3,0 3,0 3,0 3,0 0,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,7 -75,0 -75,1 -74,9	-3,6 -5,3 -4,9 -5,4 -5,5 -5,0 -5,5 -5,6 -8,4 -4,9 -5,5	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,3 2,7 2,5	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -4,0 -16,2 -23,7	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -25,4 -24,5 0,0 -20,4	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -7,6 -19,8 -27,3 -2,6
4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	wsw- wsw- wsw- wsw- wsw- wsw- wsw- wsw-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 2	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7 1562,5 1562,4	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,2 3,5 3,6	4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,8 3,7 3,6	0,0 0,0 3,0 3,0 3,0 3,0 0,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,7 -75,0 -75,1 -74,9 -74,9	-3,6 -5,3 -4,9 -5,4 -5,5 -5,0 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,3 2,7 2,5 2,5	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8 -16,8	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -25,4 -24,5 0,0 -20,4 -20,4	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -7,6 -19,8 -27,3 -2,6 -2,6
4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	wsw- wsw- wsw- wsw- wsw- wsw- wsw- wsw-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7 1562,5 1562,4 1572,8	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,5 3,6 3,6 3,6	4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,8 3,7 3,6 3,7	0,0 0,0 3,0 3,0 3,0 3,0 0,0 3,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,7 -75,0 -75,1 -74,9 -74,9	-3,6 -5,3 -4,9 -5,4 -5,5 -5,0 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,7	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,3 2,7 2,5 2,5 2,5	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8 -16,8 -15,9	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -25,4 -24,5 0,0 -20,4 -20,4 -19,5	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8
4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1607,7 1562,5 1562,4 1562,4 1562,8 1574,5	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,5 3,6 3,6 3,6 3,6	4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,8 3,7 3,6 3,7	0,0 0,0 3,0 3,0 3,0 3,0 0,0 3,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,7 -75,0 -75,1 -74,9 -74,9 -74,9 -74,6	-3,6 -5,3 -4,9 -5,4 -5,5 -5,0 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,7 -4,4	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,3 2,7 2,5 2,5 2,5 2,5	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8 -16,8 -15,9	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -25,4 -24,5 0,0 -20,4 -20,4 -19,5 0,0	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0
4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox Entstaub KollerSpalt	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7 1562,5 1562,4 1574,5 1608,8	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,5 3,6 3,6 3,6 3,6 3,6	4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,8 3,7 3,6 3,7	0,0 0,0 3,0 3,0 3,0 3,0 0,0 3,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -4,7 -22,7	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,7 -75,0 -75,1 -74,9 -74,9 -74,9 -74,9 -74,6 -75,1	-3,6 -5,3 -4,9 -5,4 -5,5 -5,0 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,7 -4,4 -4,0	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,3 2,7 2,5 2,5 2,5 2,5 2,5	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8 -16,8 -15,9 0,0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -19,5 0,0	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9
4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox Entstaub KollerSpalt Entstaubung Tosca	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7 1562,5 1562,4 1574,5 1608,8 1574,5	3,0 3,0 4,0 4,0 3,5 3,6 3,2 3,5 3,6 3,6 3,6 3,6 4,7 4,8	4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,7 4,3 1,4	0,0 0,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -4,7 -3,5	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,7 -75,0 -75,1 -74,9 -74,9 -74,9 -74,6 -75,1 -74,8	-3,6 -5,3 -4,9 -5,4 -5,5 -5,0 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,7 -4,4 -4,0 -6,1	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,3 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,5	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8 -16,8 -15,9 0,0 0,0 19,7	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -19,5 0,0 0,0 16,1	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7
4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox Entstaub Kollerspalt Entstaubung Tosca Fensterband SO	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7 1562,5 1562,4 1574,5 1608,8 1557,7 1589,6	3,0 3,0 4,0 4,0 4,5 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,8	4,9 4,8 2,9 3,8 3,7 3,6 4,3 3,8 3,7 3,6 4,3 1,4 1,3	0,0 0,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6	-77,6 -75,3 -75,7 -74,9 -75,0 -74,9 -74,7 -75,0 -75,1 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0	-3,6 -5,3 -4,9 -5,4 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,3 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -20,9 0,0 -16,8 -16,8 -15,9 0,0 19,7	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9	0,0 0,9 0,9 -23,0 -12,9 0 -25,4 -24,5 0,0 -20,4 -20,4 -19,5 0,0 0,0	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7 -20,5
4 4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox Entstaub KollerSpalt Entstaubung Tosca Fensterband SO Hallendach	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,4 1577,6 1607,7 1562,5 1562,4 1574,5 1574,5 1574,5 1589,6 1568,3	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,6 3,6 3,6 3,7 4,7 4,8 3,8	4,9 4,8 2,9 3,8 3,7 3,6 4,3 3,7 3,6 4,3 1,4 1,3 3,3	0,0 0,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6 -4,7	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,7 -75,0 -75,1 -74,9 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0 -75,2	-3,6 -5,3 -4,9 -5,4 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8 -1,3	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,3 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8 -16,8 -15,9 0,0 0,0 19,7 0,0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -20,4 -19,5 0,0 0,0	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7 -20,5 -1,9
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox Entstaub KollerSpalt Entstaubung Tosca Fensterband SO Hallendach Hallenwand	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,4 1577,6 1607,7 1562,5 1562,4 1574,5 1608,8 1574,5 1608,8 1557,7 1589,6 1568,3 1568,3	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,6 3,6 3,6 3,7 4,8 3,8 6,3 5,0	4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,7 4,3 1,4 1,3 3,3 -4,1 0,8	0,0 0,0 3,0 3,0 3,0 3,0 0,0 3,0 3,0 0,0 0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6 -4,7 -7,0	-77,6 -75,3 -75,7 -74,9 -75,0 -75,0 -74,9 -74,9 -74,9 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0 -75,1 -74,9	-3,6 -5,3 -4,9 -5,4 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8 -1,3 -1,4	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -20,9 0,0 -16,8 -16,8 -15,9 0,0 0,0 19,7 0,0 0,0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9 1,7 2,4	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -19,5 0,0 0,0 0,0	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7 -20,5 -1,9 -1,2
4 4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd.Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox Entstaub KollerSpalt Einstaubung Tosca Fensterband SO Hallendach Hallenwand Kompressorraum	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7 1562,5 1562,4 1574,5 1608,8 1574,5 1608,8 1574,5 1608,3 1566,3 1566,3	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,6 3,6 3,6 3,7 4,8 3,8 6,3 5,0 3,5	4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,7 3,6 3,7 4,3 1,4 1,3 3,3 -4,1 0,8 3,9	0,0 0,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6 -4,7 -7,0 -4,7	-77,6 -75,3 -75,7 -74,9 -75,0 -74,9 -74,7 -75,0 -75,1 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0 -75,1 -75,0 -75,1	-3,6 -5,3 -4,9 -5,4 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8 -1,3 -1,4 -12,5	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8 -16,8 -15,9 0,0 0,0 19,7 0,0 0,0 0,0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9 1,7 2,4	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -20,4 -19,5 0,0 0,0 16,1 0,0 0,0	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7 -20,5 -1,9 -1,2 -2,6
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox Entstaub KollerSpalt Entstaubung Tosca Fensterband SO Hallendach Hallenwand Kompressorraum Lager NO Anheben	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7 1562,5 1562,4 1574,5 1608,8 1557,5 1589,6 1568,3 1562,4 1605,4 1486,2	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,6 3,6 3,6 3,7 4,7 4,8 6,3 5,0 3,5	4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,7 4,3 1,4 1,3 3,3 -4,1 0,8 3,9 4,8	0,0 0,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6 -4,7 0,0	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,7 -75,0 -75,1 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0 -75,1 -74,8 -75,0 -75,1 -74,8 -75,1 -74,8 -75,0 -75,1 -74,9 -75,1 -74,6 -75,1 -74,8 -75,1 -7	-3,6 -5,3 -4,9 -5,4 -5,5 -5,0 -5,5 -5,6 -8,4 -4,9 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8 -1,3 -1,4 -12,5 -6,0	3,0 2,2 2,2 2,6 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,6 3,9 3,4 3,5 2,6 2,1	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -20,9 0,0 -16,8 -16,8 -15,9 0,0 0,0 19,7 0,0 0,0 0,0 0,0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9 1,7 2,4 1,0 12,6	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -19,5 0,0 0,0 16,1 0,0 0,0 0,0 0,0 -7,7	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7 -20,5 -1,9 -1,2 -2,6 9,0
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox Entstaub KollerSpalt Entstaubung Tosca Fensterband SO Hallendach Hallenwand Kompressorraum Lager NO Anheben Lager SW Abstellen	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7 1562,5 1562,4 1574,5 1608,8 1557,7 1589,6 1568,3 1568,4 1605,4 1486,2 1636,5	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,7 4,3 1,4 1,3 3,3 -4,1 0,8 3,9 4,8 4,9	0,0 0,0 3,0 3,0 3,0 3,0 0,0 3,0 3,0 0,0 0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6 -4,7 -7,0 -4,7 0,0 -4,4	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,7 -75,0 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0 -75,1 -74,9 -74,6 -75,1 -74,8 -75,0 -75,1 -74,9 -75,0 -75,1 -74,9 -74,5 -75,0 -75,1 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,5 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -74,9 -75,1 -75,0 -75,1 -75,0 -75,1 -75,0 -75,1 -75,0 -75,1 -75,0 -75,1 -75,0 -75,1 -75,0 -75,1 -75,0 -75,1 -75,0 -75,1 -75,0 -75,1 -75,0 -75,1 -75,0 -75,1 -75,1 -75,1 -75,1 -75,1 -75,1 -75,1 -75,1 -75,1 -75,1 -75,1 -74,3 -75,5	-3,6 -5,3 -4,9 -5,4 -5,5 -5,0 -5,5 -5,6 -8,4 -4,9 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8 -1,3 -1,4 -12,5 -6,0 -6,0	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,6 3,9 3,4 3,5 2,6 2,1 2,3	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -20,9 0,0 -16,8 -15,9 0,0 0,0 19,7 0,0 0,0 0,0 0,0 -4,1	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9 1,7 2,4 1,0 12,6 4,1	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -19,5 0,0 0,0 16,1 0,0 0,0 0,0 -7,7	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7 -20,5 -1,9 -1,2 -2,6 9,0 0,5
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Pal.Strahl Einförd. Spalter 1 Einförd. Spalter 1 Einförder Strahlen Entleeren Bruchbox Entstaub KollerSpalt Entstaubung Tosca Fensterband SO Hallendach Hallenwand Kompressorraum Lager NO Anheben Lager SW Abstellen Lichtband Nord	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7 1562,5 1562,4 1574,5 1608,8 1574,5 1608,8 1557,7 1589,6 1568,3 1562,4 1486,2 1605,4 1486,2 1636,5	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,7 4,3 1,4 1,3 3,3 -4,1 0,8 3,9 4,8 4,9 -4,1	0,0 0,0 3,0 3,0 3,0 3,0 0,0 3,0 3,0 0,0 0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6 -4,7 -7,0 -4,7 0,0 -4,4 -4,6	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,9 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0 -75,1 -74,8 -75,1 -74,8 -75,2 -75,1 -74,3 -75,5 -74,8	-3,6 -5,3 -4,9 -5,4 -5,5 -5,0 -5,5 -5,6 -8,4 -4,9 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8 -1,3 -1,4 -12,5 -6,0 -6,0 -2,9	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,6 3,9 3,4 3,5 2,6 2,1 2,3 1,8	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8 -16,8 -15,9 0,0 0,0 19,7 0,0 0,0 0,0 -4,1 0,0 0,0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9 1,7 2,4 1,0 12,6 4,1 -5,2	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -19,5 0,0 0,0 16,1 0,0 0,0 0,0 -7,7 0,0	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -0,8 0,0 -3,9 19,7 -20,5 -1,2 -2,6 9,0 0,5 -8,8
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Spalter 1 Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox Entstaub Kollerspalt Entstaubung Tosca Fensterband SO Hallendach Hallenwand Kompressorraum Lager NO Anheben Lager SW Abstellen Lichtband Nord Lichtband Nord offen	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,5 1562,4 1577,6 1607,7 1562,5 1562,4 1574,5 1608,8 1557,7 1589,6 1568,3 1562,4 1605,4 1486,2 1636,5 1574,7	3,0 3,0 4,0 4,0 4,0 3,5 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,7 4,7 4,8 3,8 6,3 5,0 3,0 6,3 6,3	4,9 4,9 4,8 2,9 3,8 3,7 3,6 4,3 3,7 3,6 4,3 1,4 1,3 3,3 -4,1 0,8 4,9 4,8 4,9	0,0 0,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 0,0 0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6 -4,7 -7,0 -4,7 -7,0 -4,7 -4,7 -3,8	-77,6 -75,3 -75,7 -74,9 -75,0 -75,1 -74,9 -74,9 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0 -75,2 -75,1 -75,3 -75,3 -75,3 -74,3	-3,6 -5,3 -4,9 -5,4 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8 -1,3 -1,4 -12,5 -6,0 -6,0 -2,9 -7,2	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,6 3,9 3,4 3,5 2,6 2,1 2,3 1,8 2,0	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -20,9 0,0 -16,8 -15,9 0,0 0,0 19,7 0,0 0,0 0,0 0,0 -4,1 0,0 0,0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9 1,7 2,4 1,0 12,6 4,1 -5,2 -2,6	0,0 0,9 0,9 -23,0 -12,9 0 -25,4 -24,5 0,0 -20,4 -20,4 -19,5 0,0 0,0 16,1 0,0 0,0 0,0 0,0 0,0	-15,1 3,4 3,2 -10,1 -8,5 -7,6 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7 -20,5 -1,9 -1,2 -2,6 9,0 0,5 -8,8 -6,2
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Spalter 1 Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox Entstaub Kollerspalt Entstaubung Tosca Fensterband SO Hallendach Hallenwand Kompressorraum Lager NO Anheben Lager Sw Abstellen Lichtband Nord Lichtband Nord offen Lichtband Sued	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,4 1577,6 1607,7 1562,5 1562,4 1562,8 1574,5 1608,8 1577,7 1589,6 1568,3 1562,4 1486,2 1636,5 1574,7	3,0 3,0 4,0 4,0 3,5 3,6 3,6 3,6 3,6 3,6 3,7 4,7 4,8 3,8 6,3 5,0 3,0 6,3 6,3 6,3	4,9 4,9 4,8 2,9 3,8 3,7 3,6 4,3 3,8 3,7 4,3 1,4 1,3 3,3 -4,1 0,8 3,9 4,8 4,9 -4,1 -4,1	0,0 0,0 0,0 3,0 3,0 3,0 3,0 3,0 3,0 0,0 0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6 -4,7 -7,0 -4,7 0,0 -4,4 -4,6 -3,8 -4,6	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,9 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,5 -75,3 -75,5 -74,8 -75,5 -74,8	-3,6 -5,3 -4,9 -5,4 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8 -1,3 -1,4 -12,5 -6,0 -6,0 -2,9 -7,2 -2,7	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,5 2,5 2,5 2,6 3,9 3,4 3,5 2,6 2,1 2,8 2,6 3,9 3,4 3,5 2,6 2,1 2,6 2,6	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8 -15,9 0,0 0,0 19,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9 1,7 2,4 1,0 12,6 4,1 -5,2 -2,6 -4,3	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -19,5 0,0 0,0 16,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-15,1 3,4 3,2 -10,1 -8,5 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7 -20,5 -1,9 -1,2 -2,6 9,0 0,5 -8,8 -6,2 -7,9
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Enler Spalt.2 Bruchbox Einförd. Spalter 1 Einförd. Spalter 2 Einfördr Strahlen Entleeren Bruchbox Entstaub KollerSpalt Entstaubung Tosca Fensterband SO Hallendach Hallenwand Kompressorraum Lager NO Anheben Lager SW Abstellen Lichtband Nord Lichtband Nord offen Lichtband Sued Lichtband Sued	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,4 1577,6 1607,7 1562,5 1562,4 1562,8 1574,5 1608,8 1574,5 1608,3 1562,4 1608,4 1486,2 1636,5 1562,4 1486,2 1636,5 1574,7 1567,8	3,0 3,0 4,0 4,0 3,6 3,6 3,6 3,6 3,6 3,7 4,8 3,8 6,3 5,0 3,5 3,6 6,3 6,3 6,3 6,3	4,9 4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,7 4,3 1,4 1,3 3,3 -4,1 0,8 3,9 4,8 4,9 -4,1 -4,1 -4,1	0,0 0,0 0,0 3,0 3,0 3,0 0,0 3,0 3,0 0,0 0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6 -4,7 -7,0 -4,7 0,0 -4,4 -4,6 -3,8 -4,6 -3,8	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,3 -75,2 -75,1 -74,3 -75,1 -74,3 -75,1 -74,3 -74,3 -75,1 -74,3 -74,3 -74,8 -74,3 -74,9 -74,8 -74,9 -74,9 -74,9 -74,9 -75,1 -74,8 -75,0 -75,1 -74,8 -75,0 -75,1 -74,8 -75,0 -75,1 -74,8 -75,0 -75,1 -74,8 -75,0 -75,1 -74,8 -75,0 -74,8 -75,0 -74,8 -75,0 -74,8 -75,0 -74,8 -74,8 -75,0 -74,8 -74,9 -73,1	-3,6 -5,3 -4,9 -5,4 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8 -1,3 -1,4 -12,5 -6,0 -2,9 -7,2 -2,7 -10,1	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,6 3,9 3,4 3,5 2,6 2,1 2,8 2,6 2,1 2,8 2,6 2,1 2,6 2,6	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8 -15,9 0,0 0,0 19,7 0,0 0,0 0,0 0,0 -4,1 0,0 0,0 0,0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9 1,7 2,4 1,0 12,6 4,1 -5,2 -2,6 -4,3 -3,5	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -20,4 -19,5 0,0 0,0 16,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7 -20,5 -1,9 -1,2 -2,6 9,0 0,5 -8,8 -6,2 -7,9 -7,1
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd.Leer Spalt.2 Einförd. Spalter 1 Einförd. Spalter 2 Einförder Strahlen Entleeren Bruchbox Entstaub KollerSpalt Entstaubung Tosca Fensterband SO Hallendach Hallenwand Kompressorraum Lager NO Anheben Lager Sw Abstellen Lichtband Nord Lichtband Nord Lichtband Sued Lichtband Sued Lichtband Sued offen Lkw Lager Ausliefern	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,4 1577,6 1607,7 1562,5 1562,4 1562,8 1574,5 1608,8 1574,5 1608,3 1557,7 1589,6 1568,3 1562,4 1486,2 1636,5 1574,7 1567,8	3,0 3,0 4,0 4,0 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	4,9 4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,7 4,3 1,4 1,3 3,3 -4,1 0,8 3,9 4,8 4,9 -4,1 -4,1 -4,1 4,9	0,0 0,0 0,0 3,0 3,0 3,0 0,0 3,0 3,0 0,0 0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -4,7 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6 -4,7 -7,0 -4,7 0,0 -4,4 -4,6 -3,8 -5,9	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0 -75,2 -75,1 -74,3 -75,5 -74,8 -75,0 -75,2 -75,1 -74,3 -75,5	-3,6 -5,3 -4,9 -5,4 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8 -1,3 -1,4 -12,5 -6,0 -2,9 -7,2 -2,7 -10,1 -6,3	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,6 3,9 3,4 3,5 2,6 2,1 2,3 2,6 2,1 2,3 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -20,9 0,0 -16,8 -16,8 -15,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9 1,7 2,4 1,0 12,6 4,1 -5,2 -2,6 -4,3 -3,5 1,8	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -19,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7 -20,5 -1,9 -1,2 -2,6 9,0 0,5 -8,8 -6,2 -7,9 -7,1 0,0
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I_04 I_04 I_04 I_04 I_04 I_04 I_04 I_04	MITTENW. AUI	E 26	1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G 1.0G	WSW- WSW- WSW- WSW- WSW- WSW- WSW- WSW-	Abholen Strahl Out Abstellen Spalter IN Abstellen Strahl IN Ausförd. Bruch 1 Ausförd. Bruch 2 Ausförd. Strahlanlag Ausförd.Leer Spalt.1 Ausförd.Leer Spalt.2 Bruchbox Einförd. Enler Spalt.2 Bruchbox Einförd. Spalter 1 Einförd. Spalter 2 Einfördr Strahlen Entleeren Bruchbox Entstaub KollerSpalt Entstaubung Tosca Fensterband SO Hallendach Hallenwand Kompressorraum Lager NO Anheben Lager SW Abstellen Lichtband Nord Lichtband Nord offen Lichtband Sued Lichtband Sued	1619,4 1557,9 1556,6 1572,2 1581,7 1616,9 1562,4 1577,6 1607,7 1562,5 1562,4 1562,8 1574,5 1608,8 1574,5 1608,3 1562,4 1608,4 1486,2 1636,5 1562,4 1486,2 1636,5 1574,7 1567,8	3,0 3,0 4,0 4,0 3,6 3,6 3,6 3,6 3,6 3,7 4,8 3,8 6,3 5,0 3,5 3,6 6,3 6,3 6,3 6,3	4,9 4,9 4,8 2,9 2,9 3,8 3,7 3,6 4,3 3,7 4,3 1,4 1,3 3,3 -4,1 0,8 3,9 4,8 4,9 -4,1 -4,1 -4,1	0,0 0,0 0,0 3,0 3,0 3,0 0,0 3,0 3,0 0,0 0	-0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-20,9 -5,8 -6,4 -4,7 -4,7 -24,1 -4,7 -4,8 -6,1 -24,2 -4,7 -4,7 -4,7 -22,7 -3,5 -17,6 -4,7 -7,0 -4,7 0,0 -4,4 -4,6 -3,8 -4,6 -3,8	-77,6 -75,3 -75,7 -74,9 -75,0 -75,2 -74,9 -74,9 -74,9 -74,9 -74,9 -74,9 -74,6 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,8 -75,0 -75,2 -75,1 -74,3 -75,2 -75,1 -74,3 -75,1 -74,3 -75,1 -74,3 -74,3 -75,1 -74,3 -74,3 -74,8 -74,3 -74,9 -74,8 -74,9 -74,9 -74,9 -74,9 -75,1 -74,8 -75,0 -75,1 -74,8 -75,0 -75,1 -74,8 -75,0 -75,1 -74,8 -75,0 -75,1 -74,8 -75,0 -75,1 -74,8 -75,0 -74,8 -75,0 -74,8 -75,0 -74,8 -75,0 -74,8 -74,8 -75,0 -74,8 -74,9 -73,1	-3,6 -5,3 -4,9 -5,4 -5,5 -5,6 -8,4 -4,9 -5,5 -5,5 -5,7 -4,4 -4,0 -6,1 -0,8 -1,3 -1,4 -12,5 -6,0 -2,9 -7,2 -2,7 -10,1	3,0 2,2 2,2 2,6 2,6 2,7 2,5 2,5 2,5 2,5 2,5 2,5 2,6 3,9 3,4 3,5 2,6 2,1 2,8 2,6 2,1 2,8 2,6 2,1 2,6 2,6	-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6 3,6	0,0 4,5 4,5 -19,4 -9,3 0,0 -21,8 -21,8 -20,9 0,0 -16,8 -15,9 0,0 0,0 19,7 0,0 0,0 0,0 0,0 -4,1 0,0 0,0 0,0	-11,5 7,0 6,8 -6,5 -4,9 -23,1 -4,0 -16,2 -23,7 1,0 2,8 5,6 -0,3 23,3 -16,9 1,7 2,4 1,0 12,6 4,1 -5,2 -2,6 -4,3 -3,5	0,0 0,9 0,9 -23,0 -12,9 0,0 -25,4 -24,5 0,0 -20,4 -20,4 -19,5 0,0 0,0 16,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	-15,1 3,4 3,2 -10,1 -8,5 -26,7 -7,6 -19,8 -27,3 -2,6 -2,6 -0,8 0,0 -3,9 19,7 -20,5 -1,9 -1,2 -2,6 9,0 0,5 -8,8 -6,2 -7,9 -7,1

4	I_04	MITTENW. AUE 26	1.0G	WSW-	Stapler Strahler IN	1521,0	3,0	4,8	0,0	0,0	-4,9	-74,6	-5,7	2,1	-1,9	3,6	9,4	13,5	5,8	9,9
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Stapler Strahler Out	1658,2	3,0	4,8	0,0	0,0	-7,0	-75,4	-5,5	2,3	-1,9	3,6	0,0	8,9	0,0	5,3
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tor Koller Rütteln	1607,6	3,7	3,4	3,0	0,0	-21,9	-75,1	-2,1	1,6	-1,9	3,6	0,0	-25,8	0,0	-29,4
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tor Kollertrommel	1607,6	3,7	3,4	3,0	0,0	-21,9	-75,1	-2,1	1,6	-1,9	3,6	0,0	-25,8	0,0	-29,4
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tor NO Tosca	1562,6	3,8	3,3	3,0	0,0	-4,7	-74,9	-5,4	2,8	-1,9	3,6	-24,6	-6,7	-28,2	-10,3
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tor NO Tosca offen	1562,6	3,8	3,3	3,0	0,0	-4,7	-74,9	-5,6	2,5	-1,9	3,6	-10,6	8,1	-14,2	4,5
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tor Nord	1567,5	3,7	3,4	3,0	0,0	-4,7	-74,9	-5,8	2,5	-1,9	3,6	-16,0	-12,2	-19,6	-15,8
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tor NW	1590,7	3,7	3,4	3,0	0,0	-4,7	-75,0	-5,9	2,6	-1,9	3,6	0,0	-7,5	0,0	-11,1
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tor SO Umreifung	1602,7	3,7	3,4	3,0	0,0	-21,5	-75,1	-2,4	3,9	-1,9	3,6	0,0	-23,9	0,0	-27,5
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tor SW Freiraum	1616,8	3,7	3,4	3,0	0,0	-23,5	-75,2	-3,4	3,8	-1,9	3,6	0,0	-32,0	0,0	-35,6
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tür N Spalter	1562,4	3,2	4,4	3,0	0,0	-4,8	-74,9	-6,9	2,5	-1,9	3,6	-48,7	-34,5	-52,3	-38,1
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tür NO Tosca	1562,7	3,3	4,3	3,0	0,0	-5,1	-74,9	-5,4	3,4	-1,9	3,6	-43,6	-26,5	-47,2	-30,1
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tür NW	1587,6	3,2	4,4	3,0	0,0	-12,0	-75,0	-5,1	2,7	-1,9	3,6	0,0	-40,0	0,0	-43,6
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tür NW	1607,6	3,2	4,4	3,0	0,0	-23,8	-75,1	-4,8	2,9	-1,9	3,6	0,0	-45,4	0,0	-49,0
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tür SO Tosca	1578,1	3,2	4,3	3,0	0,0	-19,9	-75,0	-1,4	4,9	-1,9	3,6	0,0	-36,1	0,0	-39,7
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Tür SO Umreifung	1605,1	3,2	4,4	3,0	0,0	-21,3	-75,1	-1,7	4,9	-1,9	3,6	0,0	-41,0	0,0	-44,6
4	I_04	MITTENW. AUE 26	1.0G	WSW-	Anzahl/Summe												20,7	25,1	17,1	21,4

Abb. 13: Berechnungsdaten Schallimmission Veredlung, Bezeichnungen nach [7]

T/N: Tag/Nachtstunde; min. Abstand min_Sm; mittlere Höhe hm; Reflexionsanteil Refl; Immission

Nr	Aufp	Geb_Name	Aufp_Name	T_N	Immiss	Im_63	Im125	Im250	Im500	Im_1k	Im_2k	Im_4k	Im_8k
1	I_01	AM KANAL 2	2.OG NW -	.Tag.	35,6	20,0	23,1	27,7	30,7	30,5	26,0	14,2	-990,0
2	I_02	AM KANAL 1A	1.0G NW -	.Tag.	34,5	19,2	22,4	26,6	29,4	29,3	25,1	12,9	-990,0
3	I_03	MITTENW. ALLEE 1C	1.0G SO -	.Tag.	26,8	14,1	11,7	17,1	22,4	22,7	14,8	-990,0	-990,0
4	I_04	MITTENW. AUE 26	1.OG WSW-	.Tag.	25,1	11,3	11,0	17,1	20,8	20,5	11,1	-990,0	-990,0
1	I_01	AM KANAL 2	2.OG NW -	Nacht	35,3	19,8	22,8	27,6	30,5	30,0	25,5	14,0	-990,0
2	I_02	AM KANAL 1A	1.0G NW -	Nacht	34,3	19,1	. 22,2	26,5	29,3	29,1	25,0	12,8	-990,0
3	I_03	MITTENW. ALLEE 1C	1.0G SO -	Nacht	22,8	10,1	7,6	13,2	18,6	18,6	10,7	-990,0	-990,0
4	I_04	MITTENW. AUE 26	1.0G WSW-	Nacht	21,4	7,7	7,2	13,3	17,1	16,8	7,3	-990,0	-990,0

Abb. 14: Frequenzabhängige Berechnungsergebnisse Schallimmission nach TA Lärm (Summenpegel und Oktavpegel)

4 Literatur

- [1] DIN 18005 Schallschutz im Städtebau, Teil 1: Grundlagen und Hinweise für die Planung, Beuth-Verlag Berlin 2002-07 DIN 18005 Schallschutz im Städtebau, Beiblatt zu Teil 1: Berechnungsverfahren, Schalltechnische Orientierungswerte für die städtebauliche Planung, Beuth-Verlag Berlin, Mai 1987
- [2] Kartengrundlagen soweit nicht vom Auftraggeber zur Verfügung gestellt: © GeoBasis-DE/LGB, dl-de/by-2-0 (Abruf 2022), https://geoportal.brandenburg.de
- [3] Gutachtliche Stellungnahme zu der zu erwartenden Geräuschsituation nach der Errichtung und Inbetriebnahme eines geplanten Betonsteinwerkes der Firma Kann GmbH im Gewerbe- und Industriegebiet Telz, Bericht Nr. 421 010 292, Dr. Werner Wohlfarth Unternehmensberatung Umweltschutz, Oktober 1992
- [VEP] Vorhaben- und Erschließungsplan "Mühlenberg" der Ortsgemeinde Telz, in Kraft getreten am 10.07.92
- [4] Bebauungsplan "Mühlenberg", Gemeinde Telz, Stadt Mittenwalde, in Kraft getreten am 05.05.1998.
- [5] Bebauungsplan "Mühlenberg", 1. Änderung, Entwurfsstand Dezember 2021
- [6] Mark Ströhle, Untersuchung der Geräuschemissionen von dieselgetriebenen Staplern im praktischen Betrieb, Fachhochschule Stuttgart Hochschule für Technik, 2000
- [7] DIN ISO 9613-2 E, Dämpfung des Schalls bei der Ausbreitung im Freien, Teil 2: Allgemeines Berechnungsverfahren, Beuth-Verlag Berlin, 1997-09
- [TAL] Sechste Allgemeine Verwaltungsvorschrift zum Bundesimmissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm TA Lärm) vom 26. August 1998, GMBl 1998 Nr. 26, Seite 503, zuletzt geändert am 1. Juni 2017
- [PRK] Parkplatzlärmstudie, Bayerisches Landesamt für Umweltschutz, 6. Auflage 2007
- [RLS90] Richtlinien für den Lärmschutz an Straßen, RLS90, Bundesminister für Verkehr, 1990

5 Zusammenfassung

Für das KANN-Werk in Mittenwalde ist die Errichtung einer Halle mit Veredelungsanlagen - Kolleranlage, Spaltanlage und Strahlanlage - einhergehend mit der Vergrößerung der genutzten Lagerflächen geplant. Hierfür soll der Bebauungsplan "Mühlenberg" geändert werden.

Die Schallimmission in der Nachbarschaft wird für das Gesamtgebiet des Bebauungsplans auf der Grundlage typischer flächenbezogener Schallleistungspegel nach DIN 18005 rechnerisch prognostiziert. Der Bebauungsplan erweist sich hierbei als nach wie vor mit der schutzbedürftigen Nutzung der Umgebung vereinbar.

Ferner wird die Schallimmission der Veredlungshalle einschließlich Erweiterungsfläche Lager rechnerisch nach TA Lärm prognostiziert. Damit soll sichergestellt werden, dass die geplante Nutzung tatsächlich möglich ist. Die nächstgelegenen schutzbedürftigen Räume liegen außerhalb des Einwirkungsbereichs der Anlage oder unterschreiten die jeweiligen Richtwerte zumindest um 6 dB.

(Dr. Schewe)