

Überflutungsnachweis

Ermittlung abflusswirksame Fläche & Regenwasserbemessung

Stand April 2023

Ermittlung der abflusswirksamen Flächen

Grundlage:

- Niederschlagshöhen und spenden Kostra (DWD, 2020)
- DWA-A 117 Dezember 2013
- DWA-M 153 August 2007
- DWA-A 118 März 2006

- ATV-DVWK-A 117 März 2001
- ATV-DVWK-A 138 Januar 2002

Ermittlung der Regenwasserspende:

- Die abflusswirksame Fläche werden gemäß DWA-A 118 als Stadtzentren, Industrie- und Gewerbegebiete zugeordnet. Böschungen, Bankette oder Gräben werden nicht mit berücksichtig.
- → Häufigkeit des Bemessungsregens für die Anlagen 0,10 (T = 10 Jahre)
- Toleranzbereich angegebener Werte für Planungszwecke gemäß Kostra (DWD, 2020) (Spalte 193 Zeile 110)
- Niederschlagshöhen und -spenden gemäß Kostra (Spalte 193 Z. 110) Klassenfaktor DWD-Vorgabe

Kostra-Atlas

Ermittlung der abflusswirksamen Fläche Gesamt

GRZ	0,8

Bezeichnung Einzel- fläche	Einzel- fläche AEZ	Bebaubare Fläche	Abfluss- beiwerte Ψ	abfluss- wirksame Fläche A _U
-	m²	m²	-	m²
GE	245.420	196.336	0,9	176.702
Versorgung	17.323	17.323	0,9	15.591
Verkehrsfläche				
Private Straße	9.964	9.964	0,9	8.968
Öffentliche Straße	17.311	17.311	0,9	15.580
Grünflächen	79.883	79.883	0,1	7.988
Wasserwirtschaft	5.142	5.142	0,1	514
Summe ohne öffentliche Straße	357.732	·	·	209.763
Summe	375.043		0,601	225.343

Bemessung - Muldensystem ohne Drosselabfluss

nach ATV-DVWK-A138 und ATV-DVWK-A 117

Nachweis mit 10-jährigem Regenereignis.

Eingangsdaten

durchlässige Fläche Ak = 357.732 m² undurchlässige Fläche Ared = 209.763 m² Durchl. des Bodens kf = 1,0E-06 m/s Drosselabflussspende qs = 0,0 l/(s*ha) Drosselabfluss Q = 0,00 l/s Versickerungsfläche A_S= 57.500 m² Versickerung Qs= As*kf/2 = 103,5 m³/h Zuschlagsfaktor fz = 1,2

Ermittlung des erforderlichen Volumens der Mulde

D	Zugehörige	V
Dauerstufe	Regenspende	Speichervolumen
	r _(D;0,1)	•
min	l/(sha)	m³
5	489,10	4.702,3
10	343,16	6.592,2
15	268,46	7.729,2
20	223,85	8.586,1
30	169,46	9.734,6
45	127,06	10.925,1
60	102,83	11.765,2
90	75,65	12.933,3
120	60,64	13.774,2
180	44,16	14.946,6
240	35,09	15.732,2
360	25,44	16.903,6
540	18,33	17.952,5
720	14,76	18.983,3
1080	10,62	19.867,1
1440	8,42	20.395,6
2880	4,87	21.077,7
4320	3,60	20.994,0
5760	2,78	18.978,9
7200	2,44	18.895,2
8640	2,09	16.880,1
10080	1,86	15.186,8

erforderliches Speichervolumen m³:	21.077,7
vorhandenes Speichervolumen im m³:	23.076,9
Z _M in m:	0,40
Entleerungszeit in min:	12.219,0
Entleerungszeit in h:	203,6

Bemessung - Muldensystem ohne Drosselabfluss

nach DIN 1986-100

Eingangsdaten

gesamte befästigte Fläche $A_{ges} = 375.043 \text{ m}^2$ Fläche mit Spitzenabflusswert $A = 242.348 \text{ m}^2$

Ermittlung des zusätzlich erforderlichen Speichervolumens

Nachweis mit 30-jährigem Regenereignis

Naorweis mit oo jamigem Regenereign		
D	Zugehörige	V
Dauerstufe	Regenspende	Speichervolumen
	r _(D:0,3)	·
min	l/(sha)	m³
5	629,07	5126
10	440,49	6657
15	348,24	8.058

D Dauerstufe	Zugehörige Regenspende $\mathbf{r}_{(D(0,01)}$	V Speichervolumen
min	l/(sha)	m³
5	805,6	7.113

Rest erforderliches Speichervolumen m ³ ·	8 058

Bemessung - Muldensystem mit Drosselabfluss

nach ATV-DVWK-A138 und ATV-DVWK-A 117

Nachweis mit 10-jährigem Regenereignis.

Eingangsdaten

durchlässige Fläche Ak = 357.732 m² undurchlässige Fläche Ared = 209.763 m² Durchl. des Bodens kf = 1,0E-06 m/s Drosselabflussspende qs = 2,0 l/(s*ha) Drosselabfluss Q = 71,55 l/s Versickerungsfläche A_S= 36.500 m² Versickerung Qs= As*kf/2 = 65,7 m³/h Zuschlagsfaktor fz = 1,2

Ermittlung des erforderlichen Volumens der Mulde

D	Zugehörige	V
Dauerstufe	Regenspende	Speichervolumen
	r _(D;0,1)	
min	l/(sha)	m³
5	489,10	4.309,4
10	343,16	6.027,8
15	268,46	7.052,4
20	223,85	7.819,1
30	169,46	8.831,6
45	127,06	9.860,1
60	102,83	10.565,6
90	75,65	11.505,0
120	60,64	12.143,0
180	44,16	12.949,7
240	35,09	13.399,9
360	25,44	13.932,1
540	18,33	14.078,0
720	14,76	14.207,2
1080	10,62	13.380,3
1440	8,42	12.226,3
2880	4,87	6.290,8
4320	3,60	-350,2
5760	2,78	-8.770,6
7200	2,44	-15.411,7
8640	2,09	-23.832,1
10080	1,86	-31.956,0

erforderliches Speichervolumen m³:	14.207,2
vorhandenes Speichervolumen im m³:	14.663,4
Z_{M} in m:	0,40
Entleerungszeit in min:	2.636,9
Entleerungszeit in h:	43,9

Bemessung - Muldensystem mit Drosselabfluss

nach DIN 1986-100

Eingangsdaten

gesamte befästigte Fläche $A_{ges} = 375.043 \text{ m}^2$ Fläche mit Spitzenabflusswert $A = 242.348 \text{ m}^2$

Ermittlung des zusätzlich erforderlichen Speichervolumens

Nachweis mit 30-jährigem Regenereignis

Naorweis mit oo jamigem Regenereign		
D	Zugehörige	V
Dauerstufe	Regenspende	Speichervolumen
	r _(D:0,3)	·
min	l/(sha)	m³
5	629,07	5126
10	440,49	6657
15	348,24	8.058

D Dauerstufe	Zugehörige Regenspende $\mathbf{r}_{(D(0,01)}$	V Speichervolumen
min	l/(sha)	m³
5	805,6	7.113

Rest erforderliches Speichervolumen m³:	8 058

Bemessung - Mulde für die öffentliche Straße

nach ATV-DVWK-A138 und ATV-DVWK-A 117

Nachweis mit 10-jährigem Regenereignis.

Eingangsdaten

durchlässige Fläche Ak = 17.311 m² undurchlässige Fläche Ared = 15.580 m² Durchl. des Bodens kf = 1,0E-06 m/s Drosselabflussspende qs = 0,0 l/(s*ha) Drosselabfluss Q = 0,00 l/s Versickerungsfläche A_S= 5.000 m² Versickerung Qs= As*kf/2 = 9,0 m³/h Zuschlagsfaktor fz = 1,2

Ermittlung des erforderlichen Volumens der Mulde

D	Zugehörige	V
Dauerstufe	Regenspende	Speichervolumen
	r _(D;0,1)	·
min	l/(sha)	m³
5	410,70	304,9
10	281,75	417,8
15	222,90	495,3
20	184,45	545,8
30	141,21	625,5
45	105,77	700,8
60	85,40	752,3
90	62,83	826,0
120	50,09	873,7
180	36,66	950,5
240	29,16	999,1
360	21,06	1.064,5
540	15,34	1.136,5
720	12,05	1.162,7
1080	8,78	1.217,1
1440	6,96	1.233,5
2880	4,03	1.208,1
4320	2,99	1.146,2

erforderliches Speichervolumen m³:	1.233,5
vorhandenes Speichervolumen im m³:	1.768,4
Z_{M} in m:	0,35
Entleerungszeit in min:	8.223,2
Entleerungszeit in h:	137,1

Bemessung - Mulde für die öffentliche Straße

nach DIN 1986-100

Eingangsdaten

gesamte befästigte Fläche $A_{ges} = 17.311 \text{ m}^2$ Fläche mit Spitzenabflusswert $A = 15.580 \text{ m}^2$

Ermittlung des zusätzlich erforderlichen Speichervolumens

Nachweis mit 30-jährigem Regenereignis

Naonweis mit oo jamigem Negenereigi		
D	Zugehörige	V
Dauerstufe	Regenspende	Speichervolumen
	r _(D:0,3)	·
min	l/(sha)	m³
5	629,07	223
10	440,49	285
15	348,24	345

D Dauerstufe	Zugehörige Regenspende $\mathbf{r}_{(D(0,01)}$	V Speichervolumen
min	l/(sha)	m³
5	805,6	314

Rest erforderliches Speichervolumen m ³ ·	345

Bemessung - Regenrückhaltebecken

nach ATV-DVWK-A138 und ATV-DVWK-A 117

Nachweis mit 10-jährigem Regenereignis.

Eingangsdaten

durchlässige Fläche Ak = 357.732 m² undurchlässige Fläche Ared = 209.763 m² Durchl. des Bodens kf = 1,0E-20 m/s Drosselabflussspende qs = 2,0 l/(s*ha) Drosselabfluss Q = 71,55 l/s Versickerungsfläche A_S= $5.250 \ m^2$ Versickerung Qs= As*kf/2 = 0,0 m³/h Zuschlagsfaktor fz = 1,2

Ermittlung des erforderlichen Volumens des Beckens

D	Zugehörige	V
Dauerstufe	Regenspende	Speichervolumen
	r _(D;0,1)	•
min	l/(sha)	m³
5	489,10	3.760,1
10	343,16	5.260,9
15	268,46	6.156,8
20	223,85	6.827,8
30	169,46	7.715,6
45	127,06	8.619,7
60	102,83	9.242,2
90	75,65	10.075,9
120	60,64	10.646,8
180	44,16	11.379,4
240	35,09	11.801,1
360	25,44	12.323,6
540	18,33	12.538,3
720	14,76	12.738,5
1080	10,62	12.192,6
1440	8,42	11.361,3
2880	4,87	6.886,0
4320	3,60	1.795,4
5760	2,78	-4.846,7
7200	2,44	-9.937,3
8640	2,09	-16.579,5
10080	1,86	-22.963,0

erforderliches Speichervolumen m³:	12.738,5
vorhandenes Speichervolumen im m³:	13.125,0
Z_{M} in m:	2,50
Entleerungszeit in min:	2.967,4
Entleerungszeit in h:	49,5

Bemessung - Regenrückhaltebecken

nach DIN 1986-100

Eingangsdaten

gesamte befästigte Fläche $A_{ges} = 375.043 \text{ m}^2$ Fläche mit Spitzenabflusswert $A = 242.348 \text{ m}^2$

Ermittlung des zusätzlich erforderlichen Speichervolumens

Nachweis mit 30-jährigem Regenereignis

Naorweis mit oo jamigem Regenereign		
D	Zugehörige	V
Dauerstufe	Regenspende	Speichervolumen
	r _(D:0,3)	·
min	l/(sha)	m³
5	629,07	5126
10	440,49	6657
15	348,24	8.058

D Dauerstufe	Zugehörige Regenspende	V Speichervolumen
	r _{(D(0,01)}	'
min	l/(sha)	m³
5	805,6	7.113

Rest erforderliches Speichervolumen m³:	8 058